
 EE 308/MENG 483 Spring 2017

 The MC9S12 Timer Input Capture Function
o Capturing the time of an external event
o The MC9S12 Input Capture Function
o Registers used to enable the Input Capture Function
o Using the MC9S12 Input Capture Function
o A program to use the MC9S12 Input Capture in polling

mode
o Using the Keyword volatile in C
o A program to use the MC9S12 Input Capture in

interrupt mode

 EE 308/MENG 483 Spring 2017

Capturing the Time of an External Event

• One way to determine the time of an external event is to wait for
the event to occur, the read the TCNT register:

• For example, to determine the time a signal on Bit 0 of PORTB
changes from a high to a low:

while ((PORTB & BIT0) != 0) ; /* Wait while Bit 0 high */
time = TCNT; /* Read time after goes low */

• Two problems with this:

1. Cannot do anything else while waiting
2. Do not get exact time because of delays in software

• To solve problems use hardware which latches TCNT when event
occurs, and generates an interrupt.

• Such hardware is built into the MC9S12 — called the Input
Capture System

 EE 308/MENG 483 Spring 2017

Measure the time between two events

How to measure Δt?

Wait until signal goes low, then measure TCNT

 EE 308/MENG 483 Spring 2017

while ((PORTB & BIT0) == BIT0) ;
start = TCNT;
while ((PORTB & BIT0) == BIT1) ;
end = TCNT;
dt = end - start;

Problems: 1) May not get very accurate time
2) Can’t do anything while waiting for signal
 level to change.

Measure the time between two events

 EE 308/MENG 483 Spring 2017

Solution: Latch TCNT on falling edge of signal

Read latched values anytime later and get exact value

Can have MC9S12 generate interrupt when event
 occurs, so can do other things while waiting

 EE 308/MENG 483 Spring 2017

The MC9S12 Input Capture Function

• The MC9S12 allows you to capture the time an external event
occurs on any of the eight Port T PTT pins

• An external event is either a rising edge or a falling edge

• To use the Input Capture Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the MC9S12 that you want to use a particular pin of
PTT for input capture

– Tell the MC9S12 which edge (rising, falling, or either) you
want to capture

– Tell the MC9S12 if you want an interrupt to be generated
when the capture occurs

 EE 308/MENG 483 Spring 2017

A Simplified Block Diagram of the MC9S12 Input Capture
Subsystem

Input Capture

Port T Pin x set up as Input Capture (IOSx = 0 in TOIS)

 EE 308/MENG 483 Spring 2017

Registers used to enable Input Capture Function

Write a 1 to Bit 7 of TSCR1 to turn on timer

To turn on the timer subsystems: TSCR1 = BIT7;

Set the prescaler in TSCR2

Make sure the overflow time is greater than the time difference you
want to measure

To have overflow rate
of 21.84 ms:

TSCR2 = 0x03;

 EE 308/MENG 483 Spring 2017

Write a 0 to the bits of TIOS to make those pins input capture

To make Pin 3 an input capture pin: TIOS = TIOS & ~BIT3;

Write to TCTL3 and TCTL4 to choose edge(s) to capture

To have Pin 3 capture a rising
edge:

TCTL4 = (TCTL4 | BIT6) & ~BIT7;

When specified edge occurs, the corresponding bit in TFLG1 will
be set.

To clear the flag, write a 1 to the bit you want to clear (0 to all
others)

 EE 308/MENG 483 Spring 2017

To wait until rising edge on Pin 3: while ((TFLG1 & BIT3) == 0);

To clear flag bit for Pin 3: TFLG1 = BIT3;

To enable interrupt when specified edge occurs, set corresponding
bit in TIE register

To enable interrupt on Pin 3: TIE = TIE | BIT3;

To determine time of specified edge, read 16−bit result registers
TC0 thru TC7

To read time of edge on Pin 3:

unsigned int time;
time = TC3;

 EE 308/MENG 483 Spring 2017

Using Input Capture on the MC9S12

Input Capture: Connect a digital signal to a pin of Port T. Can
capture the time of an edge (rising, falling or either) – the edge will
latch the value of TCNT into TCx register. This is used to measure
the difference between two times.

To use Port T Pin x as an input capture pin:

1. Turn on timer subsystem (1 -> Bit 7 of TSCR1 reg)

2. Set prescaler (TSCR2 reg). To get most accuracy set overflow
rate as small as possible, but larger than the maximum time
difference you need to measure.

3. Set up PTx as IC (0 -> bit x of TIOS reg)

4. Set edge to capture (EDGxB EDGxA of TCTL 3-4 regs)

5. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of
TFLG1)

 EE 308/MENG 483 Spring 2017

6. If using interrupts

(a) Enable interrupt on channel x (1 -> bit x of TIE reg)
(b) Clear I bit of CCR (cli or enable())
(c) In interrupt service routine,

i. Read time of edge from TCx
ii. Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other
bits of TFLG1)

7. If polling in main program

(a) Wait for Bit x of TFLG1 to become set
(b) Read time of edge from TCx
(c) Clear flag (1 -> bit x of TFLG1 reg, 0 -> all other bits of
TFLG1)

 EE 308/MENG 483 Spring 2017

/* Program to determine the time between two rising edges using
the MC9S12 Input Capture subsystem */

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include <stdio.h>
#include <termio.h>

unsigned int first, second, time;

void main(void)
{

TSCR1 = 0x80; /* Turn on timer subsystem */
TSCR2 = 0x05; /* Set prescaler for divide by 32 */

/* 87.38 ms overflow time */
/* Setup for IC1 */
TIOS = TIOS & ~0x02; /* IOC1 set for Input Capture */
TCTL4 = (TCTL4 | 0x04) & ~0x08; /* Capture Rising Edge */
TFLG1 = 0x02; /* Clear IC1 Flag */

/* Setup for IC2 */
TIOS = TIOS & ~0x04; /* IOC2 set for Input Capture */
TCTL4 = (TCTL4 | 0x10) & ~0x20; /* Capture Rising Edge */
TFLG1 = 0x04; /* Clear IC2 Flag */

while ((TFLG1 & 0x02) == 0) ; /* Wait for 1st rising edge; */
first = TC1; /* Read time of 1st edge; */

while ((TFLG1 & 0x04) == 0) ; /* Wait for 2nd rising edge; */
second = TC2; /* Read time of 2nd edge; */

time = second - first; /* Calculate total time */
printf("time = %d cycles\n",time);
_ _asm(swi);

}

 EE 308/MENG 483 Spring 2017

Using the Keyword volatile in C

• Consider the following code fragment, which waits until an event
occurs on Pin 2 of PTT:

#define TRUE 1
#define FALSE 0

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include "vectors12.h"

#define enable() _ _asm(cli)
#define disable() _ _asm(sei)

interrupt void tic2_isr(void);
unsigned int time, done;

void main(void)
{

disable();

/* Code to set up Input Capture 2 */
TFLG1 = 0x04; /* Clear CF2 */
UserTimerCh2 = (short) &tic2_isr; /* Set interrupt vector */
enable(); /* Enable Interrupts */
done = FALSE;
while (!done) ;
_ _asm(swi);

}

 EE 308/MENG 483 Spring 2017

interrupt void tic2_isr(void)
{

time = TC2;
TFLG1 = 0x04;
done = TRUE;

}

• An optimizing compiler knows that done will not change in the
main() function. It may decide that, since done is FALSE in the
main() function, and nothing in the main() function changes the
value of done, then done will always be FALSE, so there is no need
to check if it will ever become TRUE.

• An optimizing compiler might change the line

while (!done) ;

to

while (TRUE) ;

and the program will never get beyond that line.

• By declaring done to be volatile, you tell the compiler that the
value of done might change somewhere else other than in the
main() function (such as in an interrupt service routine), and the
compiler should not optimize on the done variable.

volatile unsigned int time, done;

 EE 308/MENG 483 Spring 2017

• If a variable can change its value outside the normal flow of the
program (i.e., inside an interrupt service routine), declare the
variable to be of type volatile.

 EE 308/MENG 483 Spring 2017

Program to measure the time between two rising edges, and
print out the result

#include <hidef.h> /* common defines and macros */
#include "derivative.h" /* derivative-specific definitions */
#include <stdio.h>
#include <termio.h>
#include "vectors12.h"

#define enable() _ _asm(cli)
#define disable() _ _asm(sei)

#define TRUE 1
#define FALSE 0

/* Function Prototypes */
interrupt void TIC0_ISR(void);
interrupt void TIC2_ISR(void);

/* Declare things changed inside ISRs as volatile */
volatile unsigned int time_1, time_2, reaction_time, done;

void main(void)
{

disable();
done = FALSE;

/* Turn on timer subsystem */
TSCR1 = 0x80;

/* Set prescaler to 128 (349 ms) */
TSCR2 = 0x07;

 EE 308/MENG 483 Spring 2017

/* Setup for IC1 */
TIOS = TIOS & ~0x01; /* Configure PT0 as IC */
TCTL4 = (TCTL4 | 0x02) & ~0x01; /* Capture Falling Edge */
TFLG1 = 0x02; /* Clear IC0 Flag */

/* Set interrupt vector for Timer Channel 0 */
UserTimerCh0 = (short) &TIC0_ISR;
TIE = TIE | 0x01; /* Enable IC0 Interrupt */

/* Setup for IC2 */
TIOS = TIOS & ~0x04; /* Configure PT2 as IC */
TCTL4 = (TCTL4 | 0x20) & ~0x10; /* Capture Falling Edge */
TFLG1 = 0x04; /* Clear IC2 Flag */

/* Set interrupt vector for Timer Channel 2 */
UserTimerCh2 = (short) &TIC2_ISR;
TIE = TIE | 0x04; /* Enable IC2 Interrupt */

/* Enable interrupts by clearing I bit of CCR */
enable();
while (!done)
{

_ _asm(wai); /* Low power mode while waiting */
}
reaction_time = time_2 - time_1; /* Calculate total time */
printf("reaction time = %d cycles\r\n",reaction_time); /* print */;

}

interrupt void TIC0_ISR(void)
{

time_1 = TC0;
TFLG1 = 0x01;

}

 EE 308/MENG 483 Spring 2017

interrupt void tic2_isr(void)
{

time_2 = TC2;
done = TRUE;
TFLG1 = 0x04;

}

 EE 308/MENG 483 Spring 2017

Letting the MC9S12 convert cycles to time

You can let the MC9S12 convert clock cycles to time, and display
the time between two edges on the seven-segment LEDs:

• Need to divide the number of clock cycles by
(24,000,000/prescaler)

• Easiest to do this using floating point numbers

• Need to convert back to fixed-point number to display on
seven-segment LEDs

• Can display number of milliseconds on seven segment
LEDs

• This will display time in hexadecimal. It makes sensor for
humans to display time in decimal – convert hexadecimal to
BCD

• To use floating-point numbers, select ”float is IEEE32”
when you create a CodeWarrior project.

 EE 308/MENG 483 Spring 2017

#define clock_freq 24000000.0
#define prescaler ((float) (1 << (TSCR2&0x07)))

unsigned int time_1, time_2, reaction_time;
unsigned int value; // Value to display on seven-segment LEDs

...

reaction_time = ((float)(time_1 - time_2))*prescaler)/clock_freq * 1000.0;
value = hex2bcd(reaction_time);

...

unsigned int hex2bcd(unsigned int x)
{

unsigned int d3,d2,d1,d0;
if (x > 9999) return 0xFFFF;
d3 = x/1000;
x = x-d3*1000;
d2 = x/100;
x = x-d2*100;
d1 = x/10;
x = x-d1*10;
d0 = x;
return d3*16*16*16 + d2*16*16 + d1*16 + d0;

}

