

- MC9S12 Assembler Directives
- A Summary of MC9S12 Instructions
- Disassembly of MC9S12 op codes
 - Review of Addressing Modes
 - Which branch instruction to use (signed vs unsigned)
 - Using X and Y registers as pointers
 - o Hand assembling a program
 - o How long does a program take to run?
 - Assembler directives
 - How to disassemble an MC9S12 instruction sequence

Summary of HCS12 addressing modes

ADDRESSING MODES

Na	me	Example	Op Code	Effective Address
INH	Inherent	ABA	18 06	None
IMM	Immediate	LDAA #\$35	86 35	PC + 1
DIR	Direct	LDAA \$35	96 35	0x0035
EXT	Extended	LDAA \$2035	B6 20 35	0x2035
IDX IDX1 IDX2	Indexed	LDAA 3,X LDAA 30,X LDAA 300,X	A6 03 A6 E0 13 A6 E2 01 2C	X + 3 X + 30 X + 300
IDX	Indexed Postincrement	LDAA 3,X+	A6 32	x (x+3 -> x)
IDX	Indexed Preincrement	LDAA 3,+X	A6 22	X+3 (X+3 -> X)
IDX	Indexed Postdecrement	LDAA 3,X-	A6 3D	x (x-3 -> x)
IDX	Indexed Predecrement	LDAA 3,-X	A6 2D	x-3 (x-3 -> x)
REL	Relative	BRA \$1050 LBRA \$1F00	20 23 18 20 0E CF	PC + 2 + Offset PC + 4 + Offset

A few instructions have two effective addresses:

• MOVB #\$AA,\$1C00 Move byte 0xAA (IMM) to address

\$1C00 (EXT)

• **MOVW 0,X,0,Y** Move word from address pointed to by

X (IDX) to address pointed to by Y

(IDX)

A few instructions have three effective addresses:

• **BRSET FOO,#\$03,LABEL** Branch to LABEL (REL) if bits #\$03 (IMM) of variable FOO (EXT) are set.

Using X and Y as Pointers

- Registers X and Y are often used to point to data.
- To initialize pointer use

ldx #table

not

ldx table

• For example, the following loads the address of table (\$1000) into X; i.e., X will point to table:

ldx #table ; *Address of table* \Rightarrow *X*

The following puts the first two bytes of table (\$0C7A) into X. X will **not** point to table:

ldx table ; *First two bytes of table* $\Rightarrow X$

• To step through table, need to increment pointer after use

ldaa 0,x inx

or

ldaa 1,x+

table

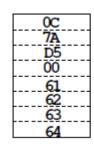


table: dc.b 12,122,-43,0 dc.b 'a','b','c','d'

Which branch instruction should you use?

Branch if A > BIs 0xFF > 0x00?

If unsigned, 0xFF = 255 and 0x00 = 0, so 0xFF > 0x00

If signed, 0xFF = -1 and 0x00 = 0, so 0xFF < 0x00

Using unsigned numbers: **BHI**

Using signed numbers: **BGT**

Hand Assembling a Program

To hand-assemble a program, do the following:

- **1**. Start with the org statement, which shows where the first byte of the program will go into memory.
- (e.g., **org** \$2000 will put the first instruction at address \$2000.)
- **2.** Look at the first instruction. Determine the addressing mode used.
- (e.g., **ldab** #10 uses IMM mode.)
- **3**. Look up the instruction in the **MC9S12 S12CPUV2 Reference Manual**, find the appropriate Addressing Mode, and the Object Code for that addressing mode. (e.g., **ldab IMM** has object code **C6 ii**.)
 - Table A.1 of the S12CPUV2 Reference Manual has a concise summary of the instructions, addressing modes, op-codes, and cycles.
- **4**. Put in the object code for the instruction, and put in the appropriate operand. Be careful to convert decimal operands to hex operands if necessary. (e.g., **ldab** #10 becomes **C6** 0**A**.)
- **5**. Add the number of bytes of this instruction to the address of the instruction to determine the address of the next instruction. (e.g., \$2000 + 2 = \$2002 will be the starting address of the next instruction.)

org \$2000 ldab #10 loop: clra dbne b,loop swi

Freescale HC12-Assembler (c) Copyright Freescale 1987-2010

Abs. Rel. Loc Obj. code Source line

1	1			
2	2	0000 2000	prog: equ	\$2000
3	3		org	prog
4	4	a002000 C60A	ldab	#10
5	5	a002002 87	loop: clra	
6	6	a002003 0431 FC	dbn	e b,loop
7	7	a002006 3F	swi	

Table A-1. Instruction Set Summary (Sheet 7 of 14)

	1.00		Machine Access Detail					
Source Form	Operation	Addr. Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC	
LBGT rah 6	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	0999/090 ¹	OPPP/OPO ¹			
LBHI roh6	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/GPOl	OPPP/OPO ¹			
LBHS raft 6	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OFFF/GFO ¹	OPPP/OPO ¹			
LBLE rah 6	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹	оррр/оро ¹			
LBLO rehs	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/GPO ¹	OPPP/OPO ¹			
LBLS raft 6	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/GPO ¹	OPPP/OPO ¹			
LBLT reht6	Long Branch if Less Than (if N ⊕ V = 1) (signed)	REL	18 2D qq rr	OPPP/GPOl	OPPP/OPO ¹			
LBMI ral 18	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹	OPPP/OPO ¹			
LBNE raft 6	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO ¹			
LBPL raft 6	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	oppp/opol	OPPP/OPO ¹			
LBRA raft 6	Long Branch Always (f 1-1)	REL	18 20 qq rr	OPPP	OPPP			
LBRN ral 16	Long Branch Never (ff 1 = 0)	REL	18 21 qq rr	OPO	OPO			
LBVC raft 6	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	oppp/opol	OPPP/OPO ¹			
LBVS relt6	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	oppp/opo ¹	OPPP/OPO ¹			
LDAA šopriší LDAA opriša LDAA opriša LDAA opriša LDAA oprišy,ysp LDAA oprišy,ysp LDAA oprišy,ysp LDAA (Daysp) LDAA (porišy,ysp) LDAA (porišy,ysp)	(M) → A Load Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	86 11 96 dd 86 hh 11 A6 xb A6 xb ff A6 xb er ff A6 xb er ff A6 xb er ff	P	P rfP rOP rfP rPO frPP fIfrfP		ΔΔ0-	
LDAB stoprei LDAB operia LDAB operia LDAB operio Jysp LDAB operio Jysp LDAB operio Jysp LDAB operio Jysp LDAB (DJysp) LDAB (DJysp) LDAB (DJysp) LDAB (DJysp)	(M) → B Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 11 D6 dd F6 hh 11 E6 xb E6 xb ff E6 xb ce ff E6 xb ce ff E6 xb ce ff	P rPf rPO rPf rPO frPP fifrPf fiprPf	p rfp r09 rfp r90 fr99 fifrfp		ΔΔ0-	
LDD #opritsi LDD opritsi LDD opritsi LDD opritsi LDD opritsi LDD opritsi, yjsp LDD opritsi, yjsp LDD opritsi, yjsp LDD (lysp) LDD (loporitsi, yjsp)	(M:M+1) → A:B Load Double Accumulator D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [DX2]	CC jj kk DC dd FC hh 11 EC xb EC xb ff EC xb ee ff EC xb ee ff	PO RPF RPO RPF RPO FRPP FIFRPF FIFRPF	OP REP ROP REP REPO FREP FIFREP FIFREP		ΔΔ0-	

Note 1. OPPPIOPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	SXHI	NZVC
BLS & B	Branch if Lower or Same	REL	23 rr	ppp/p ¹ ppp/p ²		
BLT rol8	(ff C + Z = 1) (unsigned) Branch if Less Than (ff N ⊕ V = 1) (signed)	REL	2D rr	ppp/pl ppp/p		
BMI role	Branch if Minus (if N = 1)	REL	2B rr	ppp/p ¹ ppp/p		
BNE rol8	Branch if Not Equal (f Z = 0)	REL	26 rr	ppp/p ¹ ppp/p		
BPL add	Branch if Plus (if N = 0)	REL	2A rr	ppp/p ¹ ppp/p		
BRAnde	Branch Always (f 1 = 1)	REL	20 rr	ppp pp		
BRCLR oprisa, mskis, ralë BRCLR oprisa, mskis, ralë BRCLR oprisë, mskis, ralë BRCLR oprisë, xysp, mskis, ralë BRCLR oprisë, xysp, mskis, ralë	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh 11 mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	######################################		
BRN rails	Branch Never (if 1 = 0)	REL	21 rr	P I		
BRSET opril, msk8, ral8 BRSET opril6a, msk8, ral8 BRSET opril0, xysp, msk8, ral8 BRSET opril0, xysp, msk8, ral8 BRSET opril16, xysp, msk8, ral8	Branch if [M] • (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh 11 mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	######################################		
BSET opr8, msk8 BSET opr16x, msk8 BSET opr00_xysp, msk8 BSET opr01/xysp, msk8 BSET opr016,xysp, msk8	(M) + (mm) → M Set Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	FPMO		ΔΔ0-
BSR reds	(SP) − 2 → SP; HTM ₂ CHTM _L → M _(SP) M _(SP+1) Subroutine address → PC Branch to Subroutine	REL	07 rr	SPPP PPPS		
BVC rolls	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹ PPP/P		
BVS ral8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	ppp/p ¹ ppp/p		
CALL oprifile, page CALL opriditysp, page CALL opriditysp, page CALL opriditysp, page CALL (D, xysp) CALL [opriditysp] CALL [opridit 6, xysp]	(SP) − 2 → SP; RTN _L ATN _L → M _(SP) M _(SP+1) (SP) − 1 → SP; (PPG) → M _(SP) ; pg → PPAGE register; Program address → PC Call subroutine in extended memory (Program may be located on another expansion memory page.) Indirect modes get program address and new pg value based on pointer.	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb se ff pg 4B xb 4B xb se ff	gnSePPP gnESEPPI gnSePPP gnESEPPI gnSePPP gnESEPPI fgnSePPP fgnESEPPI flignSePPP flignSePPI flignSePPP flignSePPI		
CBA	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00 00		ΔΔΔΔ
CLC	0 → C Translates to ANDCC #\$FE	IMM	10 FE	P		0
CLI	0 → 1 Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 KF	2	0	
CLR opriša CLR opračujep CLR opračujep CLR (papa 18. sjep CLR (papa 18. sjep) CLR (apaa 18. sjep) CLRA CLPB	0 → M Clear Memory Location 0 → A Clear Accumulator A 0 → B Clear Accumulator B 0 → V	EXT IDX IDX1 IDX2 [D,IDX] IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ff 69 xb sc ff 69 xb 69 xb sc ff 87 C7	PwO		0-
	Translates to ANDCC #\$FD					

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12	M68HC12	SXHI	NZVC
CMPB #opr8i CMPB opr8a	(B) – (M) Compare Accumulator B with Memory	DIR	Cl ii Dl dd	p rPf	rfF		ΔΔΔΔ
CMPB oprité a CMPB oprité_xysp		EXT IDX IDX1	F1 hh 11 E1 xb E1 xb ff	r90 r9f r90	r09 rf9 r90		
CMPB opns9,xysp CMPB opns16,xysp		IDX2	El xb ee ff	frpp	free		
CMPB [D,xysp] CMPB [qprx+6,xysp]		[D,IDX] [IDX2]	El xb ee ff	fifepf fipepf	EIErEP EIPrEP		
COM opri6a COM opri0 xysp	$(\overline{M}) \rightarrow M$ equivalent to SFF $-(M) \rightarrow M$	EXT	71 hh 11 61 xb	rPw0 rPw	rOPw rPw		ΔΔ01
COM oprasi, xysp COM oprasi6, xysp	1's Complement Memory Location	IDX1 IDX2	61 xb ff 61 xb se ff	rPw0 frPwP	rPOw ErPPw		
COM [D,xysp]		[D,IDX]	61 xb	fIfrPw	fifrew		
COM [qprix16;xysp] COMA	(A) → A Complement Accumulator A	[IDX2] INH	61 xb se ff 41	fiPrPw O	EIPrPw O		
COMB CPD #contei	(B) → B Complement Accumulator B (A:B) – (M:M+1)	INH	51	0	0		
CPD opr8a	Compare D to Memory (16-Bit)	DIR	9C dd kk	PO RPE	REP		ΔΔΔΔ
CPD opn16a CPD opnx0_xysp		EXT	BC hh 11 AC xb	RPO RPf	ROP		
CPD opnosysysp CPD opnos 6 sysp		IDX1 IDX2	AC xb ff AC xb se ff	RPO ERPP	RPO ERPP		
CPD [D,xysp] CPD [opex16,xysp]		[D,IDX] [DX2]	AC xb AC xb se ff	fiferf firef	fifzfp fipzfp		
CPS#apr16i CPSopr8a	(SP) – (M:M+1) Compare SP to Memory (16-Bit)	IMM	8F jj kk 9F dd	PO RPf	OF REP		ΔΔΔΔ
CPS opri6a	Compare or 10 Memory (16-bit)	EXT	BF hh 11	RPO	ROP		
CPS opni0_xysp CPS opni0_xysp		IDX IDX1	AF xb AF xb ff	RPE RPO	REP RPO		
CPS oprote sysp CPS [D,sysp]		IDX2 ID.IDX1	AF xb ee ff AF xb	ERPP EIERPE	free freep		
CPS [aprix16,xysp]		[10002]	AF xb ee ff	fipppf	fipsfp		
CPX #opr16i CPX opr8u	(X) – (M:M+1) Compare X to Memory (16-Bit)	DIR	8E jj kk 9E dd	PO RPE	OF REP		ΔΔΔΔ
CPX opni6a CPX opni0_xysp	, , , , , ,	EXT	HE hh 11 AE xb	RPO RPE	ROP		
CPX opras), xysp		IDX1	AE xb ff	RPO	RPO		
CPX opro 16 xysp CPX [D,xysp]		IDX2 [D,IDX]	AE xb se ff AE xb	ERPP EIERPE	fifrfp		
CPX [qprx16,xysp] CPY #apr16i	(Y) - (M:M+1)	[IDX2]	AE xb ee ff 8D 11 kk	fipppf po	FIPREP		ΔΔΔΔ
CPY oprise	Compare Y to Memory (16-Bit)	DIR	9D dd	RPE	REP		4444
CPY opni6a CPY opni0_xysp		EXT	BD hh 11 AD xb	RPO RPE	ROP		
CPY opns9.xysp CPY opns18.xysp		IDX1 IDX2	AD xb ff AD xb ee ff	RPO FRPP	RPO ERPP		
CPY [D,xysp] CPY [opra:16,xysp]		[D,IDX] 1DX21	AD xb AD xb ee ff	fifnpf fipnpf	fifzfp fipzfp		
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	OĐO	ofo		ΔΔ?Δ
DBEQ abdiys, rolb	(ontr) - 1→ ontr	REL	04 lb rr	PPP (branch)	PPP		
	if (critr) = 0, then Branch else Continue to next instruction	(9-bit)		PPO (no branch)			
	Decrament Counter and Branch if = 0 (ontr = A, B, D, X, Y, or SP)						
DBNE abdxys, ral9	(ontr) - 1 → ontr If (ontr) not = 0, then Branch;	FIEL (9-bit)	04 1b rr	PPP (branch) PPO (no	PPP		
	else Continue to next instruction			branch)			
	Decrement Counter and Branch if ≠ 0 (ontr = A, B, D, X, Y, or SP)						

DBNE

Decrement and Branch if Not Equal to Zero

DBNE

Operation $(counter) - 1 \Rightarrow counter$

If (counter) not = 0, then (PC) + $$0003 + rel \Rightarrow PC$

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative destination if the counter register does not reach zero. Rel is a 9-bit two's complement offset for branching forward or backward in memory. Branching range is \$100 to \$0FF (-256 to +255) from the address following the last byte of object code in the instruction.

CCR Effects

			ı				
_	-	-	-	-	-	ı	-

Code and CPU Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
DBNE abdxysp, rei9	REL (9-bit)		PPP (branch) PPO (no branch)

Loop Primitive Postbyte (1b) Coding						
Source Form	Postbyte ¹	Object Code	Counter Register	Offset		
DBNE A, rei9 DBNE B, rei9 DBNE D, rei9 DBNE X, rei9 DBNE Y, rei9 DBNE SP, rei9	0010 X000 0010 X001 0010 X100 0010 X101 0010 X110 0010 X111	04 20 rr 04 21 rr 04 24 rr 04 25 rr 04 26 rr 04 27 rr	A B D X Y	Positive		
DBNE A, rei9 DBNE B, rei9 DBNE D, rei9 DBNE X, rei9 DBNE Y, rei9 DBNE SP, rei9	0011 X000 0011 X001 0011 X100 0011 X101 0011 X110 0011 X111	04 30 rr 04 31 rr 04 34 rr 04 35 rr 04 36 rr 04 37 rr	A B D X Y SP	Negative		

NOTES:

Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select the counter register.

MC9S12 Cycles

- MC9S12 works on 48 MHz clock
- A processor cycle takes 2 clock cycles P clock is 24 MHz
- Each processor cycle takes **41.7 ns** $(1/24 \mu s)$ to execute
- An instruction takes from **1** to **12** processor cycles to execute
- You can determine how many cycles an instruction takes by looking up the CPU cycles for that instruction in the Reference Manual.
 - For example, **LDAB** using the **IMM** addressing mode shows one CPU cycle (of type P).
 - − **LDAB** using the **EXT** addressing mode shows three CPU cycles (of type **rPO**).
 - Section 6.6 of the S12CPUV2 Reference Manual explains what the HCS12 is doing during each of the different types of CPU cycles.

2000	org \$2000	; Inst	Mode	Cycles
2000 C6 0A	ldab #10	; LDAB	(IMM)	1
2002 87	loop:clra	; CLRA	(INH)	1
2003 04 31 FC	dbne b,loop	; DBNE	(REL)	3
2006 3F	swi	: SWI		9

The program executes the **ldab** #10 instruction once. It then goes through the loop 10 times (which has two instructions, one with one cycle and one with three cycles), and finishes with the swi instruction (which takes 9 cycles).

Total number of cycles:

$$1 + 10 \times (1 + 3) + 9 = 50$$

$$50 \text{ cycles} = 50 \times 41.7 \text{ ns/cycle} = 2.08 \ \mu\text{s}$$

LDAB

Load B

LDAB

Operation $(M) \Rightarrow B$

 $imm \Rightarrow B$

Loads B with either the value in M or an immediate value.

CCR Effects

- - - Λ Λ Ο -

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is \$00; cleared otherwise

V: Cleared

Code and CPU Cycles

Source Form	Address Mode	Machine Code (Hex)	CPU Cycles
LDAB #opr8i LDAB opr3a LDAB opr16a LDAB oprx0_xysppc LDAB oprx16_xysppc LDAB oprx16_xysppc LDAB (D,xysppc) LDAB [D,xysppc] LDAB [oprx16_xysppc]	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 ii D6 dd F6 hh ll E6 xb E6 xb ff E6 xb ee ff E6 xb	P rPf rPO rPf rPO frPP fIfrPf fIPrPf

Assembler Directives

- In order to write an assembly language program it is necessary to use assembler **directives**.
- T hese are not instructions which the HC12 executes but are directives to the assembler program about such things as where to put code and data into memory.
- CodeWarrior has a large number of assembler directives, which can be found in the CodeWarrior help section.
- We will use only a few of these directives. (Note: In the following table, [] means an optional argument.) Here are the ones we will need:

Directive	Description		Example
Name			
equ	Give a value to a symbol	len:	equ 100
org	Set starting value of location counter where code or data will go		org \$1000
dc.b	Allocate and initialize storage for 8-bit variables. Place the bytes in successive memory locations	var: name	dc.b 2,18 : dc.b "Jane"
dc.w	Allocate and initialize storage for 16-bit variables. Place the bytes in successive memory locations	var:	dc.w \$ABCD
ds.b	Allocate specified number of 8-bit storage places	Table	: ds.b 10
ds.w	Allocate specified number of 16-bit storage spaces	table	ds.w 50
dcb.b	Fill memory with a given value: The first value is the number of bytes to fill. The second number is the value to put into memory	init_d	lata: dcb.b 100,0

Using labels in assembly programs

A **label** is defined by a name followed by a colon as the first thing on a line. When the label is referred to in the program, it has the numerical value of the location counter when the label was defined.

Here is a code fragment using labels and the assembler directives dc and ds:

org \$2000

table1: dc.b \$23,\$17,\$f2,\$a3,\$56

table2: ds.b 5

var: dc.w \$43af

The CodeWarrior assembler produces a listing file (**.lst**). Here is the listing file from the assembler:

Freescale HC12-Assembler (c) Copyright Freescale 1987-2009 Abs. Rel. Loc Obj. code Source line \$2000 1 org 2 2 a002000 2317 F2A3 table1: dc.b \$23,\$17,\$f2,\$a3,\$56 002004 56 3 3 a002005 table2: ds.b 5 4 4 a00200A 43AF dc.w \$43af var: 5 5

Note that **table1** is a name with the value of \$2000, the value of the location counter defined in the **org** directive. Five bytes of data are defined by the **dc.b** directive, so the location counter is increased from \$2000 to \$2005.

Note that **table2** is a name with the value of \$2005. Five bytes of data are set aside for table2 by the **ds.b** 5 directive. The as12 assembler initialized these five bytes of data to all zeros. **var** is a name with the value of \$200a, the first location after table2.

HC12 Instructions

- 1. Data Transfer and Manipulation Instructions instructions which move and manipulate data (S12CPUV2 Reference Manual, Sections 5.3, 5.4, and 5.5).
- Load and Store load copy of memory contents into a register; store copy of register contents into memory.

LDAA \$2000 ; Copy contents of addr \$2000 into A STD 0,X ; Copy contents of D to addrs X and X+1

• Transfer — copy contents of one register to another.

TBA ; Copy B to A TFR X,Y ; Copy X to Y

• Exhange — exchange contents of two registers.

XGDX ; Exchange contents of D and XEXG A,B ; Exchange contents of A and B

• Move — copy contents of one memory location to another.

MOVB \$2000,\$20A0 ; Copy byte at \$2000 to \$20A0

MOVW 2,X+,2,Y+ ; Copy two bytes from address held

; in X to address held in Y

; Add 2 to X and Y

2. Arithmetic Instructions — addition, subtraction, multiplication, division (**S12CPUV2 Reference Manual**, Sections 5.6, 5.8 and 5.12).

ABA ; Add B to A; results in A

SUBD \$20A1 ; Subtract contents of \$20A1 from D

INX ; Increment X by 1

MUL ; Multiply A by B; results in D

3. Logic and Bit Instructions — perform logical operations (**S12CPUV2 Reference Manual**, Sections 5.9, 5.10, 5.11, 5.13 and 5.14).

• Logic Instructions

ANDA \$2000 ; Logical AND of A with contents of

; \$2000

EORB 2,X ; Exclusive OR B with contents of

; address (X+2)

• Clear, Complement and Negate Instructions

NEG -2,X; Negate (2's comp) contents of

; address (X-2)

CLRA ; Clear ACC A

• Bit manipulate and test instructions — work with bits of a register or memory.

BITA #\$08 ; Check to see if Bit 3 of A is set BSET \$0002,#\$18 ; Set bits 3 and 4 of address \$0002

• Shift and rotate instructions

LSLA ; Logical shift left A

ASR \$1000 ; Arithmetic shift right value at address

; \$1000

4. Compare and test instructions — test contents of a register or memory (to see if zero, negative, etc.), or compare contents of a register to memory (to see if bigger than, etc.) (**S12CPUV2 Reference Manual**, Section 5.9).

TSTA ; (A)-0 -- set flags accordingly

CPX #\$8000 ; (X) - \$8000 -- set flags accordingly

5. Jump and Branch Instructions — Change flow of program (e.g., goto, if-then-else, switch-case) (**S12CPUV2 Reference Manual**, Sections 5.19, 5.20 and 5.21).

JMP L1 ; Start executing code at address label

; L1

BEQ L2 ; If Z bit set, go to label L2

DBNE X,L3 ; Decrement X; if X not 0 then goto L3 BRCLR \$1A,#\$80,L4 ; If bit 7 of addr \$1A clear, go to

; label L4

JSR sub1 ; Jump to subroutine sub1 RTS ; Return from subroutine

6. Interrupt Instructions — Initiate or terminate an interrupt call (**S12CPUV2 Reference Manual**, Section 5.22).

• Interrupt instructions

SWI; Initiate software interrupt

RTI ; Return from interrupt

7. Index Manipulation Instructions — Put address into X, Y or SP, manipulate X, Y or SP (**S12CPUV2 Reference Manual**, Section 5.23).

ABX ; Add (B) to (X)

LEAX 5,Y ; Put address (Y) + 5 into X

8. Condition Code Instructions — change bits in Condition Code Register (**S12CPUV2 Reference Manual**, Section 5.26).

ANDCC #\$f0 ; Clear N, Z, C and V bits of CCR

SEV ; Set V bit of CCR

9. Stacking Instructions — push data onto and pull data off of stack (**S12CPUV2 Reference Manual**, Section 5.24).

PSHA ; Push contents of A onto stack

PULX ; Pull two top bytes of stack, put into X

10. Stop and Wait Instructions — put MC9S12 into low power mode (S12CPUV2 Reference Manual, Section 5.27).

STOP ; Put into lowest power mode

WAI ; Put into low power mode until next interrupt

11. Null Instructions

NOP ; No operation BRN ; Branch never

12. Instructions we won't discuss or use — BCD arithmetic, fuzzy logic, minimum and maximum, multiply-accumulate, table interpolation (**S12CPUV2 Reference Manual**, Sections 5.7, 5.16, 5.17, and 5.18).

Disassembly of an HC12 Program

• It is sometimes useful to be able to convert *HC12 op codes* into *mnemonics*.

For example, consider the hex code:

ADDR DATA		
1000 C6 05 CE 20 00 I	E6 01 18 06 04 3	35 EE <mark>3F</mark>

- To determine the instructions, use Table A-2 of the HCS12 Core Users Guide.
 - If the first byte of the instruction is anything other than \$18, use Sheet 1 of Table A.2. From this table, determine the number of bytes of the instruction and the addressing mode.
 For example, \$C6 is a two-byte instruction, the mnemonic is LDAB, and it uses the IMM addressing mode. Thus, the two bytes C6 05 is the op code for the instruction LDAB #\$05.
 - If the first byte is **\$18**, use Sheet 2 of Table A.2, and do the same thing. For example, **18 06** is a two byte instruction, the mnemonic is **ABA**, and it uses the **INH** addressing mode, so there is no operand. Thus, the two bytes **18 06** is the op code for the instruction **ABA**.

- Indexed addressing mode is fairly complicated to disassemble. You need to use Table A.3 to determine the operand. For example, the op code \$E6 indicates LDAB indexed, and may use two to four bytes (one to three bytes in addition to the op code). The postbyte 01 indicates that the operand is 0,1, which is 5-bit constant offset, which takes only one additional byte. All 5-bit constant offset, pre and post increment and decrement, and register offset instructions use one additional byte. All 9-bit constant offset instructions use two additional bytes, with the second byte holding 8 bits of the 9 bit offset. (The 9th bit is a direction bit, which is held in the first postbyte.) All 16-bit constant offset instructions use three postbytes, with the 2nd and 3rd holding the 16-bit unsigned offset.
- Transfer (**TFR**) and exchange (**EXG**) instructions all have the op code **\$B7**. Use Table A.5 to determine whether it is **TFR** or an **EXG**, and to determine which registers are being used. If the most significant bit of the postbyte is **0**, the instruction is a transfer instruction.
- Loop instructions (Decrement and Branch, Increment and Branch, and Test and Branch) all have the op code **\$04**. To determine which instruction the op code **\$04** implies, and whether the branch is <u>positive</u> (forward) or <u>negative</u> (backward), use Table A.6. For example, in the sequence **04 35 EE**, the 04 indicates a loop instruction. The 35 indicates it is a **DBNE X** instruction (decrement register X and branch if result is not equal to zero), and the direction is backward (negative). The **EE** indicates a branch of -18 bytes.

_

• Use up all the bytes for one instruction, then go on to the next instruction.

C6 05 \Rightarrow LDAB #\$05 two-byte LDAB, IMM addressing mode

CE 20 00 \Rightarrow LDX #\$2000 three-byte LDX, IMM addressing mode

E6 01 \Rightarrow **LDAB 1,X** two to four-byte LDAB,

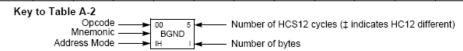
IDX addressing mode. Operand 01 => 1,X, a 5b constant offset which uses only one postbyte

18 06 \Rightarrow **ABA** two-byte ABA, INH addressing

mode

04 35 EE \Rightarrow **DBNE X**,(-18) three-byte loop instruction

Postbyte 35 indicates DBNE X,


negative

3F \Rightarrow **SWI** one-byte SWI, INH addressing

mode

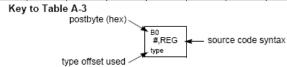
Table A-2. CPU12 Opcode Map (Sheet 1 of 2)

Sect 10				_								. '			_	
H																
Name	BGND	ANDCC		PULX	NEGA	NEGB			SUBA	SUBA	SUBA			SUBB	SUBB	
MEM	IH 1							EX 3								
H								71 4								
1	MEM	EDIV														
NUL	IH 1	IH 1	RL 2					EX 3								
H	02 1	12 ‡1	22 3/1					72 4								
0	INY															
Dec Dec Dec	IH 1															
H																
04 3 14 1 24 37 38 24 41 56 1 64 36 78 48 84 1 36 78 78 78 78 78 78 78 7																
	D4 2															
RL 3 M 2 RL 2 H 1	loon.			_												
	RI 3			ı	l											
JNP	05 3-6															
ID																
1	ID 2-4															
June	06 3															
BSR	JMP	JSR	BNE	PSHA	RORA	RORB	ROR	ROR	LDAA	LDAA	LDAA	LDAA	LDAB	LDAB	LDAB	LDAB
BSR	EX 3	EX 3	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
RL 2 DI 2 RL 3 IH 1 IH 2 IH 1 IH 1 IH 1 IIH 1 ID 2.4 EX 3 ISS 1 SS 1 SS 3	07 4	17 4	27 3/1	37 2	47 1	57 1	67 3-6	77 4	87 1	97 1	A7 1	B7 1	C7 1	D7 1	E7 3-6	F7 3
18	BSR	JSR	BEQ	PSHB	ASRA	ASRB	ASR	ASR	CLRA	TSTA	NOP	TFR/EXG	CLRB	TSTB	TST	TST
INX	RL 2	DI 2	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IH 1	IH 1	IH 1	IH 2	IH 1	IH 1	ID 2-4	EX 3
H	08 1															
OPEN DEX	INX	Page 2	BVC	PULC												
DEX	IH 1															
H															1	
OA																
RTC LEAX BPL PULD CALL STAA STAA STAA ORAA ORAA ORAA ORAA ORAA ORAB ORAB																
H																
0B	KIC 4															
RTI LEAS BMI PSHD CALL STAB STAB STAB ADDA ADDA ADDA ADDA ADDA ADDA ADDA A	0D ±0															
H	1															1
0C 4-6 1C 4 2C 3/1 3C ±+5 4C 4 5C 2 6C ±2.4 7C 3 8C 2 9C 3 AC 3-6 BC CPD CPD CPD CPD CPD CPD CPD CPD CPD CP																
BSET BSET BGE wavi BSET STD STD STD CPD CPD CPD CPD CPD CPD LDD LD																
ID 3-5 EX 4 RL 2 SP 1 DI 3 DI 2 ID 2-4 EX 3 IM 3 DI 2 ID 2-4 E																
OD																
BCLR BCLR BLT RTS BCLR STY STY CPY CPY CPY CPY LDY LDY LDY LDY LDY LDY LDY LDY LDY LD																
0E	BCLR															1
BRSET BRSET BRSET STX STX STX CPX CPX CPX CPX LDX L	ID 3-5	EX 4	RL 2	IH 1	DI 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
BRSET BRSET BRSET STX STX CPX CPX CPX CPX LDX L	0E ‡4-6	1E 5	2E 3/1	3E ‡†7	4E 4	5E 2	6E ‡2-4	7E 3	8E 2	9E 3	AE 3-6		CE 2	DE 3	EE 3-6	FE 3
0F ‡4-6 1F 5 2F 3/1 3F 9 4F 4 5F 2 6F ‡2-4 7F 3 8F 2 9F 3 AF 3-6 BF 3 CF 2 DF 3 EF 3-6 FF 3 BRCLR BRCLR BLE SWI BRCLR STS STS STS CPS CPS CPS CPS LDS LDS LDS LDS LDS LDS	BRSET	BRSET	BGT			STX		STX	CPX	CPX	CPX	CPX	LDX	LDX	LDX	LDX
BRCLR BRCLR BLE SWI BRCLR STS STS STS CPS CPS CPS LDS LDS LDS LDS LDS	ID 4-6	EX 5	RL 2	IH 1	DI 4	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
	0F ‡4-6	1F 5	2F 3/1	3F 9	4F 4	5F 2	6F ‡2-4				AF 3-6		CF 2	DF 3		
ID 4-6 EX 5 RL 2 IH 1 DI 4 DI 2 ID 2-4 EX 3 IM 3 DI 2 ID 2-4 EX 3 IM 3 DI 2 ID 2-4 EX 3	BRCLR	BRCLR	BLE	SWI	BRCLR			STS	CPS	CPS			LDS	LDS		
	ID 4-6	EX 5	RL 2	IH 1	DI 4	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3

Table A-2. CPU12 Opcode Map (Sheet 2 of 2)

									• •						
MOVW	10 12	LBRA	30 10 TRAP	40 10 TRAP	50 10 TRAP	60 10 TRAP	70 10 TRAP	80 10 TRAP	90 10 TRAP	A0 10 TRAP	B0 10 TRAP	C0 10 TRAP	D0 10	E0 10	F0 10
	IDIV IH 2	RL 4	IH 2	IH 2										IH 2	TRAP
IM-ID 5	11 12		31 10			61 10			91 10						F1 10
MOVW	FDIV	LBRN	TRAP												
EX-ID 5	IH 2	RL 4	IH 2												
02 5	12 13		32 10			62 10		82 10			B2 10			E2 10	F2 10
MOVW	EMACS SP 4	LBHI	TRAP												
ID-ID 4	3F 4	RL 4	IH 2			IH 2	IH 2 B3 10	IH 2 C3 10			IH 2 E3 10				
MOVW	EMULS	23 4/3 LBLS	TRAP	TRAP	53 10 TRAP	63 10 TRAP	TRAP	83 10 TRAP	93 10 TRAP	A3 10 TRAP	TRAP	TRAP	D3 10 TRAP	E3 10 TRAP	F3 10 TRAP
IM-EX 6		RL 4				IH 2					IH 2				IH 2
04 6											B4 10				F4 10
MOVW	EDIVS	LBCC	TRAP												
EX-EX 6	IH 2		IH 2		IH 2	IH 2				IH 2	IH 2	IH 2			IH 2
05 5 MOVW	15 12 IDIVS	25 4/3 LBCS	35 10 TRAP	45 10 TRAP	55 10 TRAP	65 10 TRAP	75 10 TRAP	85 10 TRAP	95 10 TRAP	A5 10 TRAP	B5 10 TRAP	C5 10 TRAP	D5 10 TRAP	E5 10 TRAP	F5 10 TRAP
ID-EX 5		RL 4	IH 2			IH 2					IH 2				IH 2
06 2	16 2	26 4/3					76 10		96 10			C6 10		E6 10	
ABA	SBA	LBNE	TRAP												
IH 2	IH 2	RL 4	IH 2												
	17 2	27 4/3		47 10		67 10			97 10		B7 10			E7 10	F7 10
DAA	CBA	LBEQ	TRAP												
IH 2	18 4-7	RL 4 28 4/3	IH 2 38 10	IH 2 48 10		IH 2 68 10			IH 2 98 10		IH 2 B8 10				IH 2 F8 10
MOVB 4	MAXA	LBVC	TRAP												
IM-ID 4			IH 2		IH 2					IH 2	IH 2				IH 2
09 5	19 4-7	29 4/3		49 10	59 10	69 10	79 10	89 10	99 10	A9 10	B9 10	C9 10	D9 10	E9 10	F9 10
MOVB	MINA	LBVS	TRAP												
EX-ID 5	ID 3-5	RL 4	IH 2		IH 2	IH 2				IH 2	IH 2	IH 2			IH 2
MOVB 5	1A 4-7 EMAXD	2A 4/3 LBPL	3A †3n REV	4A 10 TRAP	5A 10 TRAP	6A 10 TRAP	7A 10 TRAP	8A 10 TRAP	9A 10 TRAP	AA 10 TRAP	BA 10 TRAP	CA 10 TRAP	DA 10 TRAP	EA 10 TRAP	FA 10 TRAP
ID-ID 4		RL 4				IH 2					IH 2	IH 2			IH 2
0B 4	1B 4-7	2B 4/3				6B 10			9B 10		BB 10	CB 10			FB 10
MOVB	EMIND	LBMI	REVW	TRAP											
IM-EX 5	ID 3-5	RL 4	SP 2	IH 2											
	1C 4-7		3C ±†7B						9C 10						FC 10
MOVB	MAXM	LBGE	WAV	TRAP											
DD 5	ID 3-5 1D D4-7		SP 2			6D 10				IH 2 AD 10	IH 2 BD 10				IH 2 FD 10
MOVB	MINM	2D 4/3 LBLT	3D ‡6 TBL	TRAP											
ID-EX 5	ID 3-5		ID 3		IH 2	IH 2	IH 2	IH 2		IH 2	IH 2	IH 2	IH 2		IH 2
	1E 4-7		3E ‡8	4E 10	5E 10	6E 10	7E 10	8E 10	9E 10	AE 10	BE 10	CE 10	DE 10	EE 10	FE 10
TAB	EMAXM	LBGT	STOP	TRAP											
IH 2	ID 3-5		IH 2	IH 2	IH 2	IH 2					IH 2	IH 2		IH 2	IH 2
OF 2	1F 4-7 EMINM	2F 4/3 LBLE	3F 10 ETBL	4F 10 TRAP	5F 10 TRAP	6F 10 TRAP	7F 10 TRAP	8F 10 TRAP	9F 10 TRAP	AF 10 TRAP	BF 10 TRAP	CF 10 TRAP	DF 10 TRAP	EF 10 TRAP	FF 10 TRAP
IH 2		RL 4	1						IH 2					IH 2	IH 2
III 2	D 3-0	INL 4	J 3	111 2	111 2	in Z	111 2	iii 2	in Z	111 2	111 2	in 2	111 2	in Z	111 2

^{*} The opcode \$04 (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.


Page 2: When the CPU encounters a page 2 opcode (\$18 on page 1 of the opcode map), it treats the next byte of object code as a page 2 instruction opcode.

[†] Refer to instruction summary for more information.

[‡] Refer to instruction summary for different HC12 cycle count.

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)

		1==					1==				1==		18.5		
00 0.X	10 -16.X	20 1,+X	30 1.X+	40 0.Y	50 -16.Y	60 1,+Y	70	80 0,SP	90 -16,SP	A0 1,+SP	1.SP+	0.PC	_16.PC	E0 n.X	F0 n.SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	1,Y+ post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1
1.X	-15,X	2,+X	2,X+	1,Y	-15,Y	2,+Y	2,Y+	1,SP	-15,SP	2,+SP	2,SP+	1,PC	-15,PC	-n,X	-n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2	F2
2,X	-14,X	3,+X	3,X+	2,Y	-14,Y	3,+Y	3,Y+	2,SP	-14,SP	3,+SP	3,SP+	2,PC	-14,PC	n,X	n,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b const	16b const
03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
3,X 5b const	-13,X 5b const	4,+X	4,X+ post-inc	3,Y 5b const	-13,Y 5b const	4,+Y	4,Y+ post-inc	3,SP 5b const	-13,SP 5b const	4,+SP	4,SP+ post-inc	3,PC 5b const	-13,PC 5b const	[n,X] 16b indr	[n,SP] 16b indr
		pre-inc 24		44	54	pre-inc 64	74			pre-inc			D4		F4
04 4.X	14 -12.X	5.+X	34 5.X+	44 4.Y	-12.Y	5.+Y	74 5.Y+	84 4.SP	94 -12.SP	A4 5,+SP	5.SP+	C4 4.PC	-12.PC	E4 A.X	A.SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
05	15	25	35	45	55	65	75	85	95	A5	B5	C5	D5	E5	F5
5.X	-11.X	6.+X	6.X+	5.Y	-11.Y	6.+Y	6.Y+	5.SP	-11,SP	6.+SP	6.SP+	5.PC	-11.PC	B.X	B.SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	B offset	B offset
06	16	26	36	46	56	66	76	86	96	A6	B6	C6	D6	E6	F6
6,X	-10,X	7,+X	7,X+	6,Y	-10,Y	7.+Y	7,Y+	6,SP	-10,SP	7,+SP	7,SP+	6,PC	-10,PC	D,X	D,SP
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D offset	D offset
07	17	27	37	47	57	67	77	87	97	A7	B7	C7	D7	E7	F7
7,X	-9,X	8,+X	8,X+	7,Y	-9,Y	8,+Y	8,Y+	7,SP	-9,SP	8,+SP	8,SP+	7,PC	-9,PC	[D,X]	[D,SP]
5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
08	18	28	38	48	58	68	78	88	98	A8	B8	C8	D8	E8	F8
8,X 5b const	-8,X 5b const	8,-X pre-dec	8,X- post-dec	8,Y 5b const	-8,Y 5b const	8,-Y pre-dec	8,Y- post-dec	8,SP 5b const	-8,SP 5b const	8,-SP pre-dec	8,SP- post-dec	8,PC 5b const	-8,PC 5b const	n,Y 9b const	n,PC 9b const
09	19	29	39	49	59	69	79	89	99	A9	B9	C9	D9	E9	F9
9.X	-7.X	7X	7.X-	9.Y	-7.Y	7Y	7.Y-	9.SP	-7,SP	7SP	7.SP-	9.PC	-7.PC	-n.Y	-n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
OA OSTITUTO	1A	2A	3A	4A	5A	6A	7A	8A	9A	AA	BA	CA	DA	EA	FA
10.X	-8.X	6X	6.X-	10.Y	-6.Y	6Y	6.Y-	10.SP	-6.SP	6SP	6.SP-	10.PC	-6.PC	n.Y	n.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
0B	1B	2B	3B	4B	5B	6B	7B	8B	9B	AB	BB	CB	DB	EB	FB
11,X	-5,X	5,-X	5,X-	11,Y	-5.Y	5,-Y	5,Y-	11,SP	-5,SP	5,-SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b indr	16b indr
0C	1C	2C	3C	4C	5C	6C	7C	8C	9C	AC	BC	CC	DC	EC	FC.
12,X	-4,X	4,-X	4,X-	12,Y	-4,Y	4,-Y	4,Y-	12,SP	-4,SP	4,-SP	4,SP-	12,PC	-4,PC	A,Y	A,PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	A offset	A offset
0D	1D	2D 2 V	3D 3.X-	4D	5D	6D	7D 2 V	8D 13.SP	9D	AD CD	BD	CD 13.PC	DD -3.PC	ED B.Y	FD
13,X 5b const	-3,X 5b const	3,-X pre-dec	3,X- post-dec	13,Y 5b const	-3,Y 5b const	3,-Y pre-dec	3,Y- post-dec	5b const	-3,SP 5b const	3,-SP pre-dec	3,SP- post-dec	5b const	5b const	B, Y B offset	B,PC B offset
0E	1E	2E	3E	4E	5E	6E	7E	8E	9E	AE	BE	CE	DE	EE	FE
14.X	-2.X	2X	2 X-	14.Y	-2.Y	2Y	2.Y-	14.SP	-2.SP	2SP	2.SP-	14.PC	-2,PC	D.Y	D.PC
5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D offset	D offset
0F	1F	2F	3F	4F	5F	6F	7F	8F	9F	AF	BF	CF	DF	EF	FF
		1	1		1		1						1		
15,X	-1,X	1,-X	1,X-	15,Y	-1.Y	1,-Y	1,Y-	15,SP	-1,SP	1,-SP	1,SP-	15,PC	-1,PC	[D,Y]	[D,PC]
15,X 5b const	-1,X 5b const	1,–X pre-dec	1,X- post-dec	15,Y 5b const	-1,Y 5b const	1,-Y pre-dec	1,Y- post-dec	15,SP 5b const	-1,SP 5b const	1,–SP pre-dec	1,SP- post-dec	15,PC 5b const	-1,PC 5b const	[D,Y] D indirect	[D,PC] D indirect

Table A-5. Transfer and Exchange Postbyte Encoding

TRANSFERS													
∜LS MS⇒	0	1	2	3	4	5	6	7					
0	A⇒A	B⇒A	CCR ⇒ A	TMP3 _L ⇒ A	B⇒A	$X_L \Rightarrow A$	Y _L ⇒ A	SP _L ⇒ A					
1	A⇒B	B⇒B	CCR⇒B	TMP3 _L ⇒ B	B⇒B	X _L ⇒B	Y _L ⇒B	SP _L ⇒B					
2	A⇒CCR	B⇒CCR	CCR ⇒ CCR	TMP3 _L ⇒ CCR	B⇒CCR	X _L ⇒CCR	Y _L ⇒CCR	SP _L ⇒ CCR					
3	sex:A ⇒ TMP2	sex:B ⇒ TMP2	sex:CCR ⇒ TMP2	TMP3 ⇒ TMP2	D ⇒ TMP2	X⇒TMP2	Y⇒TMP2	SP⇒TMP2					
4	sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	sex:CCR ⇒ D SEX CCR,D	TMP3 ⇒ D	D⇒D	X⇒D	Y⇒D	SP⇒D					
5	sex:A⇒X SEX A,X	sex:B⇒X SEXB,X	sex:CCR ⇒ X SEX CCR,X	TMP3⇒X	D⇒X	X⇒X	Y⇒X	SP⇒X					
6	sex:A ⇒ Y SEX A,Y	sex:B ⇒ Y SEX B,Y	sex:CCR ⇒ Y SEX CCR,Y	TMP3⇒Y	D⇒Y	X⇒Y	$Y \Rightarrow Y$	SP⇒Y					
7	sex:A ⇒ SP SEX A,SP	sex:B⇒SP SEX B,SP	sex:CCR ⇒ SP SEX CCR,SP	TMP3 ⇒ SP	D⇒SP	X⇒SP	Y⇒SP	SP ⇒ SP					
			EXCH	ANGES									
ULS MS⇒	8	9	Α	В	С	D	E	F					
0	A ⇔ A	B ⇔ A	CCR ⇔ A	TMP3 _L ⇒ A \$00:A ⇒ TMP3	B ⇒ A A ⇒ B	$X_L \Rightarrow A$ \$00:A $\Rightarrow X$	$Y_L \Rightarrow A$ \$00:A \Rightarrow Y	SP _L ⇒ A \$00:A ⇒ SP					
1	A ⇔ B	B⇔B	CCR ⇔ B	$TMP3_L \Rightarrow B$ $FF:B \Rightarrow TMP3$	B⇒B \$FF⇒A	$X_L \Rightarrow B$ \$FF:B $\Rightarrow X$	$Y_L \Rightarrow B$ \$FF:B \Rightarrow Y	SP _L ⇒ B \$FF:B ⇒ SP					
2	A ⇔ CCR	B ⇔ CCR	CCR ⇔ CCR	TMP3 _L ⇒ CCR \$FF:CCR ⇒ TMP3	B ⇒ CCR \$FF:CCR ⇒ D	$X_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow X$	Y _L ⇒CCR \$FF:CCR⇒Y	SP _L ⇒ CCR \$FF:CCR ⇒ SP					
3	$$00:A \Rightarrow TMP2$ $TMP2_L \Rightarrow A$	$$00:B \Rightarrow TMP2$ $TMP2_L \Rightarrow B$	$$00:CCR \Rightarrow TMP2$ $TMP2_L \Rightarrow CCR$	TMP3 ⇔ TMP2	D ⇔ TMP2	X ⇔ TMP2	Y⇔TMP2	SP ⇔ TMP2					
4	\$00:A ⇒ D	\$00:B ⇒ D	\$00:CCR ⇒ D B ⇒ CCR	TMP3 ⇔ D	D⇔D	X⇔D	Y⇔D	SP ⇔ D					
5	\$00:A ⇒ X X _L ⇒ A	\$00:B ⇒ X X _L ⇒ B	\$00:CCR⇒X X _L ⇒CCR	TMP3 ⇔ X	D⇔X	X⇔X	Y⇔X	SP ⇔ X					
6	\$00:A ⇒ Y Y _L ⇒ A	\$00:B ⇒ Y Y _L ⇒ B	\$00:CCR⇒Y Y _L ⇒CCR	TMP3 ⇔ Y	D⇔Y	X⇔Y	Y⇔Y	SP ⇔ Y					
7	\$00:A⇒SP SP _L ⇒A	\$00:B ⇒ SP SP _L ⇒ B	\$00:CCR ⇒ SP SP _L ⇒ CCR	TMP3 ⇔ SP	D ⇔ SP	X ⇔ SP	Y ⇔ SP	SP ⇔ SP					

TMP2 and TMP3 registers are for factory use only.

Table A-6. Loop Primitive Postbyte Encoding (lb)

00 A	10 A	20 A	30 A	40 A	50 A	60 A	70 A	80 A	90 A	Ao A	Bo A
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B	A1 B	B1 B
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
02	12	22	32	42	52	62	72	82	92	A2	82
_	_	_	_	_	_	_	_	_	_	_	_
03	13	23	33	43	53	63	73	83	93	Аз	B3
_	_	_	_	_	_	_	_	_	_	_	_
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D		B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
05 X	15 X	25 X	35 X	45 X	55 X	65 X	75 X	85 X	95 X	As X	B6 X
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
06 Y	16 Y	26 Y	36 Y	46 Y	56 Y	66 Y	76 Y	86 Y	96 Y	As Y	B6 Y
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
07 SP	17 SP	27 SP	37 SP	47 SP	57 SP	67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)

Key to Table A-6

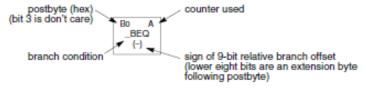


Table A-7. Branch/Complementary Branch

	Br	anch		Complementary Branch					
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment		
t>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed		
r≥m	BGE	2C	$N \oplus V = 0$	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed		
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed		
r≤m	BLE	2F	$Z + (N \oplus V) = 1$	r>m	BGT	2E	Signed		
r <m< td=""><td>BLT</td><td>2D</td><td>N ⊕ V = 1</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	N ⊕ V = 1	r≥m	BGE	2C	Signed		
t>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned		
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned		
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned		
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned		
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned		
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple		
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple		
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple		
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple		
Always	BRA	20	_	Never	BRN	21	Unconditional		

For 16-bit offset long branches precede opcode with a \$18 page prebyte.