EE451L Fall 2008

EE 451 - LAB 6

IIR Filter Design
In this laboratory you will design IIR filters with different. The FIR discussed in the previous
laboratory does not have an analog counterpart. Design of IIR filters, on the other hand, usually
makes use of the vast knowledge already available on analog filters. The design procedure

involves converting an analog filter to a discrete filter using a transformation.

Consider the general input-output equation
2 2
y(n) = Z byx(n-k)- Z ay(n-1)
=0 =1

or equivalently,

y(n) = byx(n)+ bx(n- 1)+ byx(n-2)- ayy(n-1)- a,y(n-2)
This recursive equation represents an [IR. The z-domain representation of the input-output
equation described above can be implemented using different structures: namely Direct Forms I
& 1I. The Direct Form I structure requires 2N delay elements for an Nth order filter. Direct

Form II is one of the most commonly used structures as it requires half as many delays. A Direct
Form II implementation would require the use of an intermediate variable w(n),

w(n) = x(n)- awn-1)- a,w(n- 2) and y(n) = byw(n)+ bw(n-1)+ byw(n- 2)
Taking the z-transform we find,
X(2)= (+ az' + a,z? W (z) and Y(2) = (b, + bz + bz W (2)
Thus

Y(z) byt bz '+bz?
X(z) 1taz'+tayz’

H(z)-

It is possible to implement higher order systems, i.e. fourth order IIR structures, as a cascade of
Direct Form II second sections. A fourth order transfer function can be expressed as,

Y(z) _ (by * bnz_l ¥ b212_2)(b02 * blzz_l ¥ bzzz_z)
X(z) 1+ ‘1112_1 * amz_z)(1+ alzz_l ¥ 0222_2)

H(z)=

Figure 1. depicts the implementation of a fourth order IIR filter.

EE451L Fall 2008

x(n) wl(n) ya(n) w2(n) y(n)
>() +Q+@ »Q»
A A
wl(n-1) w2(n-1)
Q« -all bll ‘»Q Q‘f -al2 b12 ‘»Q

1(n-2) w2(n-2)
b21 -a22 b22

Figure 1. Implementation of a fourth order IIR using cascaded second order sections.

-a2l

The Prelab
1. Use MATLAB to design an elliptic filter to meet the following specifications:
frass: 4 kHz
Apss: 0.1 dB
fuop: 4.5 kHz
Asop: 50 dB

2. What order of filter is this? Plot the magnitude of the filter you have designed.

3. Implement the filter as a cascade of second-order filter sections. Store the filter
coefficients in a text file. This file will be a header file which you will include in your
program and compile in the main program.

/1 elliptic.cof =========
// This file is used in the IIR lab
/I Created by Hector Erives 8/2008

#define Sections 4

float b[Sections][3]={
{ 1.0000000000, 0.1172762163, 1.0000000000},

{ 1.0000000000,-1.6703650090, 1.0000000000} } ;
float a[Sections][3]={
{ 1.0000000000,-1.5341039500, 0.6090265482},

{ 1.0000000000,-1.7035048681, 0.9772932709} } ;

EE451L Fall 2008

4. Use MATLAB to find out the order of a Butterworth filter to meet the same
specifications of Part 1.

5. What order of filter is this? Plot the magnitude of the filter you have designed.
The Lab

1. Write a program that implements the elliptic filter on the C6713 that meets the
specifications given in Part 1. of the prelab. Output the input signal to one channel and
the filtered signal through the other channel. A program template is shown in Figure 2.

2. Start CCS and begin a new project. Create and add a configuration file to the project.
Select File — New — DSP/BIOS Configuration. We will use a HWI to (i) read a new
input sample from the codec, (ii) calculate the filter output, and (iv) output to the codec.

3. Connect a function generator to the board and vary the frequency. Record the magnitude
response of the filter.

4. Implement a Butterworth filter on the C6713 that meets the specifications given in Part 1.
of the prelab. Connect a function generator to the board, vary the frequency, and record
the magnitude response of the filter.

EE451L Fall 2008

Ar========= Lahb.¢ =========
s+ This program implement an IIR filter
o

#include "dske713.h"
#include "dsk6713_aicz23i.h" </ codec support
#include "dsk6713config.h"

#include "elliptic.cof"
float wino_sections][3]={0}:

Uint3? fs = DEERT13_AICZ3_FREQ_SEHZ: s set sampling rate
#define DSKA713_AICZ23_INPUT MIC 0x0015

#define DEKR713_AICZ3_INPUT LIME 0x0011

Uintls inputsource=DEKE6713_AICZ235 TIWPUT _LINE: s+ gelect LINE IN input

wvold 1ir filter(woid)

{

short section:
float input, wa, va;

AIC_data.uint=MCEBSP_read (D3K6713_AICZ3_DATAHAWDLE) : #sread both channels
input=(float)AIC_data.channel[1];

for(section=0; section<no_sectlions: section++)

A Code to transfer the information from section to section and update win]
¥

AIC_data.channel [1]=(short)va:

MCBEP_write (DESK6713_AICZ3 _DATAHAWDLE ,AIC_data.uint) ;- output both channels
return;

¥

wvold main()

{
A Bet up needed to for interrupts
IR0 _globalDisable(): ssdisable interrupts
DEKE713 _init(): <+ eall BEL to init DSK-EMIF,PLL)
hAIC23_handle=DEE6713_AICZ23_openCodec (0, &config):~ handle(pointer) to codec
DEEE713_AICZ23 _setFreg (hAICZ3 _handle, fs); < get sample rate

DEE67153_ATICZ23_rset (hAICZ3 _handle, 0x0004, inputsource); ~ choose mic or line in
MCBSP config (DER6713 _AICZ3 DATAHANDLE &AICZ23Cfglhata) ;. interface 32 hits to AICZ23
MCBSP_start (DSE6713_AICZ23_DATAHAWDLE, MCESP XMIT START | MCBSP_RCV_START |
MCBSP_SRGRE_START | MCBEP_SRGR_FRAMESYHNC, 2207 s start data channel
CODECEventId=MCESF_getimtEventId (DSE6713_AICZ3_codecdatahandle) ; »MocBEISPL Xmit

IRQ map (CODECEwventId, 11); Ssmap MeBSP1 ¥mit to INT11

IRQ reset (CODECEventId); Aoreset codec INT 11

IR0 _globalEnable(): s#globally enable interrupts

IRQ_nmiEnable(): ssenahle NMI interrupt

IRQ enable (CODECEventId]; Arenable CODEC eventXmit INT11

MCBEP_write (DEK6713_AICZ23 DATAHAMDLE.O); ssztart McBIP interrupt coutputting a sample
}

Figure 1. Program template for Lab5.

