CIC filters

By Sylas Ashton

Overview

- Over-Sampling and Averaging
- Effective Number of Bits(ENOB)
- Moving Average Filter
- Comb-Integrator Moving Average Filter
- Re-arranging to CIC filter
- Nth Order CIC filter
- Implementation
- Frequency Response of the CIC filter

Over-Sampling and Averaging

- Increases Bit resolution
- Increasing N bits out requires 2^N samples
- Increasing Effective Number of Bits(ENOB)
 - Fos=Fout*2 2 (2n) => n=log₄(Fos/Fout)=log₄(D)
- For 50MHz sampling and 16kHz output
 - -Fos/Fout = 3125
 - 11.6 Bits out
 - 5.8 ENOB

Getting 16 ENOB

- Add 2 more averaging filters
 - Bit width = 11.6*3=34.8
 - -ENOB = 3*5.8=17.414 bits
- Resource usage grows exponentially

Basic Moving Average w/ Gain

Z^-1

D-1 delays

Z^-1

- Directly sums last D bits
 - D*Bit_width of bits of storage
 - D adders

3 averaging filters in series requires
D+D*log₂(D)+D*log₂(D)*2 bits of storage and 3*D adders

Comb-Integrator Moving Average Filter

- Still needs same amount of storage
- Needs one adder/subtractor and one integrator

Re-arrange LTI systems

- Integrate, then Decimate, then Comb
- If the Comb delay is the same as the decimation time, the delay D is the last sample from the decimator, reducing storage by a factor of D

Nth order Cascade Integrated Comb Filter

- Take N moving average filters in sequence with decimation at the end
 - Rearrange all integrators first, and comb filters last, with the decimator in the middle
- Integrator overflows are removed by combs if unsigned math is used and the bit width is at least N*log₂(D)

Implementation

- All logic runs on main clock
- All Integrators are always enabled
- Registers for the decimator and comb filters are enabled every Dth cycle(D=3125)
- Uses (2*N+1)*N*log₂(D) bits of storage

- Gain = abs(sin(pi*f*D)/sin(pi*f))^N
- Phase is linear
- For 3rd order filter with 50MHz sample rate and 16kHz output rate
 - 3dB at 4250Hz
 - 11dB drop at 8kHz,
 - min 40dB suppression above 16kHz

- 1st order CIC filter response
 - D=8

• 3rd order CIC filter frequency response

$$-D=R=8$$

3rd Order CIC Gain 50MHz Sampling Rate D=3125

References

- http://www.embedded.com/design/configurablesystems/4006446/Understanding-cascadedintegrator-comb-filters
- http://dspguru.com/sites/dspguru/files/cic.pdf
- http://home.mit.bme.hu/~kollar/papers/cic.pdf