A I:l 1 D A Introduction to the Altera
—u b Qsys System Integration Tool

For Quartus Il 13.0

1 Introduction

This tutorial presents an introduction to Altera’s Qsys system integration tool, which is used to design digital hard-
ware systems that contain components such as processors, memories, input/output interfaces, timers, and the like.
The Qsys tool allows a designer to choose the components that are desired in the system by selecting these com-
ponents in a graphical user interface. It then automatically generates the hardware system that connects all of the
components together.

The hardware system development flow is illustrated by giving step-by-step instructions for using the Qsys tool in
conjuction with the Quartus® II software to implement a simple example system. The last step in the development
process involves configuring the designed hardware system in an actual FPGA device, and running an application
program. To show how this is done, it is assumed that the user has access to an Altera DE-series Development and
Education board connected to a computer that has Quartus II and Nios® II software installed. The screen captures in
the tutorial were obtained using the Quartus II version 13.0; if other versions of the software are used, some of the
images may be slightly different.

Contents:

* Nios II System

* Altera’s Qsys Tool

* Integration of a Nios II System into a Quartus II Project

* Compiling a Quartus II Project when using the Qsys Tool

» Using the Altera Monitor Program to Download a Designed Hardware System and Run an Application Pro-
gram

Altera Corporation - University Program 1
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

2 Altera DE-series FPGA Boards

For this tutorial we assume that the reader has access to an Altera DE-series board, such as the one shown in Figure 1.
The figure depicts the DE2-115 board, which features an Altera Cyclone IV FPGA chip. The board provides a lot
of other resources, such as memory chips, slider switches, pushbutton keys, LEDs, audio input/output, video input
(NTSC/PAL decoder) and video output (VGA). It also provides several types of serial input/output connections,
including a USB port for connecting the board to a personal computer. In this tutorial we will make use of only a
few of the resources: the FPGA chip, slider switches, LEDs, and the USB port that connects to a computer.

Although we have chosen the DE2-115 board as an example, the tutorial is pertinent for other DE-series boards that
are described in the University Program section of Altera’s website.

Figure 1. An Altera DE2-115 board.

3 A Digital Hardware System Example

We will use a simple hardware system that is shown in Figure 2. It includes the Altera Nios® II embedded processor,
which is a soft processor module defined as code in a hardware-description language. A Nios II module can be
included as part of a larger system, and then that system can be implemented in an Altera FPGA chip by using the
Quartus II software.

2 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus II 13.0

Host computer

USB-Blaster
Reset n Clock interface

| |

|
Nios II processor |
|

FPGA chip
JTAG Debug JTAG UART
module interface

Avalon switch fabric

On-chi Switches LEDs
memorl}), parallel input parallel output
interface interface

S

SW7 SWO0 LEDG7 LEDGO

Figure 2. A simple example of a Nios II system.

As shown in Figure 2, the Nios II processor is connected to the memory and I/O interfaces by means of an inter-
connection network called the Avalon switch fabric. This interconnection network is automatically generated by the
Qsys tool.

The memory component in our system will be realized by using the on-chip memory available in the FPGA chip.
The I/O interfaces that connect to the slider switches and LEDs will be implemented by using the predefined modules
that are available in the Qsys tool. A special JTAG UART interface is used to connect to the circuitry that provides a
USB link to the host computer to which the DE-series board is connected. This circuitry and the associated software
is called the USB-Blaster. Another module, called the JTAG Debug module, is provided to allow the host computer
to control the Nios II system. It makes it possible to perform operations such as downloading Nios II programs into
memory, starting and stopping the execution of these programs, setting breakpoints, and examining the contents of

Altera Corporation - University Program 3
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

memory and Nios II registers.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware description
language, a knowledgeable user could write such code to implement any part of the system. This would be an
onerous and time consuming task. Instead, we will show how to use the Qsys tool to implement the desired system
simply by choosing the required components and specifying the parameters needed to make each component fit the
overall requirements of the system. Although in this tutorial we illustrate the capability of the Qsys tool by designing
a very simple system, the same approach is used to design larger systems.

Our example system in Figure 2 is intended to realize a trivial task. Eight slider switches on the DE2-115 board,
SW7 -0, are used to turn on or off the eight green LEDs, LEDG7 —0. To achieve the desired operation, the eight-bit
pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs. This will
be done by having the Nios II processor execute a program stored in the on-chip memory. Continuous operation is
required, such that as the switches are toggled the lights change accordingly.

In the next section we will use the Qsys tool to design the hardware depicted in Figure 2. After assigning the FPGA
pins to realize the connections between the parallel interfaces and the switches and LEDs on the DE2-115 board,
we will compile the designed system. Finally, we will use the software tool called the Altera Monitor Program to
download the designed circuit into the FPGA device, and download and execute a Nios II program that performs the
desired task.

Doing this tutorial, the reader will learn about:

» Using the Qsys tool to design a Nios II-based system
* Integrating the designed Nios II system into a Quartus II project
* Implementing the designed system on the DE2-115 board

* Running an application program on the Nios II processor

4 Altera’s Qsys Tool

The Qsys tool is used in conjuction with the Quartus II CAD software. It allows the user to easily create a system
based on the Nios II processor, by simply selecting the desired functional units and specifying their parameters. To
implement the system in Figure 2, we have to instantiate the following functional units:

* Nios II processor

* On-chip memory, which consists of the memory blocks in the FPGA chip; we will specify a 4-Kbyte memory
arranged in 32-bit words

* Two parallel I/O interfaces

JTAG UART interface for communication with the host computer

4 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

To define the desired system, start the Quartus II software and perform the following steps:

1. Create a new Quartus II project for your system. As shown in Figure 3, we stored our project in a directory
called gsys_tutorial, and we assigned the name lights to both the project and its top-level design entity. You
can choose a different directory or project name. Step through the screen for adding design files to the project;
we will add the required files later in the tutorial. In your project, choose the FPGA device used on your
DE-series board. A list of FPGA devices on the DE-series boards is given in Table 1.

¢ tew o wizend S
Directory, Name, Top-Level Entity [page 1 of 5]
What is the working directory for this project?

D:\gsys_tutorial
What is the name of this project?
lights

What is the name of the toplevel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.
lights

Use Existing Project Settings...

[< Back] [Mext = J [Finish] [Cancel] [Help

Figure 3. Create a new project.

Board Device Name
DEO Cyclone III EP3C16F484C6
DEO-Nano | Cyclone IVE EP4CE22F17C6
DE1 Cyclone II EP2C20F484C7
DE2 Cyclone II EP2C35F672C6
DE2-70 Cyclone II EP2C70F896C6
DE2-115 | Cyclone IVE EPACE115F29C7

Table 1. DE-series FPGA device names

2. After completing the New Project Wizard to create the project, in the main Quartus IT window select Tools >

Altera Corporation - University Program 5
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 13.0

Qsys, which leads to the window in Figure 4. This is the System Contents tab of the Qsys tool, which is used
to add components to the system and configure the selected components to meet the design requirements. The
available components are listed on the left side of the window.

File Edit System View Tools Help

'} Compenent Library
H

% 4 %
| |Project

18 New Component...
[#--System
Library
[x--Bridges
+--Clock and Reset
+--Configuration & Programming
H-DSP
+-Embedded Processors
+|--Interface Protocols
+-Memories and Memory Controllery
+|--Merlin Components.
t--Microcontroller Peripherals
+|--Peripherals
H--PLL
+|--0sys Interconnect
o)--University Program
H-Verification
o-Window Bridge

[
[
[
[
[
[
[
[
[
[
[
[
[
[

1 I | »

Edit Add

CEEEER B X

System Contents | Address Map I Clock Settings I Project Saﬂingsl Instance Pﬁrametersl System Inspector | HDL Examplel Generatiun‘

Use

Conn... Name

A clk_0
clk_in
clk_in_reset

*— clk
— clk_reset

Description
Clock Source
Clock Input
Reset Input
Clock Qutput
Reset Output

Export Clock Base

clk
reset
clk_0

1

Messages ‘

Description

Path

0 Errors, 0 Warnings

Figure 4. Create a new Nios II system.

3. The hardware system that will be generated using the Qsys tool runs under the control of a clock. For this
tutorial we will make use of the 50-MHz clock that is provided on the DE2-115 board. In Figure 4 click on
the Clock Settings tab (near the top of the screen) to bring this tab to the foreground, as illustrated in Figure 5.
Here, it is possible to specify the names and frequency of clock signals used in the project. If not already
included in this tab, specify a clock named clk_0 with the source designated as External and the frequency
set to 50.0 MHz. The settings are made by clicking in each of the three columns: Name, Source and MHz.

Return to the System Contents tab.

Altera Corporation - University Program

May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 13.0

0 Errors, 0 Warnings

File Edit System View Tools Help

Component Library |

| system contents | Acdress map | Clock Settings | project Settings |

| system

41 X

Project

g New Component...
[#-System
Library
[+-Bridges
t-Clock and Reset
t]--Configuration & Programming
§-DSP
#-Embedded Processors
#|-Interface Protocols

t]-Microcontroller Peripherals
t|--Peripherals

H-PLL

t--0sys Interconnect
t|--University Program

- Werification

t-Window Bridge

[
[
[
[
[
[
[#-Merlin Components
[
[
[
[
[
[
[E

t]-Memories and Memory Controller;

Clock Settings

| HOL Example | Generation|

Name
clk_0

Source
External

Description

Figure 5. The Clock Settings tab.

4. Next, specify the processor as follows:

click Add, which leads to the window in Figure 6.

Altera Corporation - University Program

May 2013

* On the left side of the Qsys window expand Embedded Processors, select Nios Il Processor and

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

)
[Nesposer ne2es 0 I e

“ Nios Il Processor

Megatore’ altera_nios2_gsys

1 -
I il
|l | Core Nios Il | Caches and Memory Imerfacesl Advanced Features | MMU and MPU Settings | JTAG Debug Mndule|
| |* Select a Nios Il Core

Nios Il Core: @ Hiios g
() Nios Ifs
() Nios W
Nios ll/e Nios Il/'s Nios II/f
- RISC RISC RISC
Nios Il 32-bit 32-oit 32-0it
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction L
Hardware Multiply Hardware Multiphy S
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Memory Usage (e.g Strati V) | Two MOKs (or equiv.) Two MOKs + cache Three M3Ks + cache
|* Hardware Arithmetic Operation
Hardware multiplication type: Embedded Muttipliers
Hardware divide
~ Reset Vector
Reset vector memory. Mone - L
Reset vector offset: 0x00000000
Reset vector: 0x00000000
& ion Vector
Exception vector memory: [None -
Exception vector offset: 0x00000020
Exception vector: 000000000
[(1] 3

0 Error: nios2_qgsys_0: Reset slave iz not specified. Please select the reset slave
Q Error: nios2_gsys_0: Exception slave is not specified. Please select the exception slave

Figure 6. Create a Nios II processor.

* Choose Nios II/e which is the economy version of the processor. This version is available for use without
apaid license. The Nios II processor has reset and interrupt inputs. When one of these inputs is activated,
the processor starts executing the instructions stored at memory addresses known as reset vector and
interrupt vector, respectively. Since we have not yet included any memory components in our design,
the Qsys tool will display corresponding error messages. Ignore these messages as we will provide the
necessary information later. Click Finish to return to the main Qsys window, which now shows the Nios
II processor specified as indicated in Figure 7.

Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

“
A Qsys = x
File Edit System View Tools Help
Component Library System Contents | Address Map | Clock Settings | Project Settings | P | system | HoL Example | Generation|
oy ® B Use Connections Name Description Export Clock Base End IRQ
Project p X = ck o Clock Source
,}; New Component.. = . clkf!n Clock Input clik
-System -: clk_in_reset Reset Input reset
Library clk Clock Output clk_0
- Bridges F _clkfreset Rfaset Output
-Clock and Reset — B nios2_gsys_0 Nios Il Processor
#|-Configuration & Programming - cl Clock input unconnected
{-DSP reset_n Reset Input [clk)
- Embedded Processors 7 data_master \Avalon Memory Mapped Master [clk] IRQ O IR0 31—
L. o Bitswap instruction_master \Avalon Memory Mapped Master [clk]
Custom Instruction Int| ftag_debug_module_reset |Reset Output [clk]
Custom Instruction Mzl — nagﬁden!.lgfmud.ule \Avalon Memnry.Mapped Slave [clk] 0x0800 |0x0E£E
Custom Instruction Sk — custom_instruction_mas... |Custom Instruction Master
Floating Point Hardwe
Hard Processor Sysh
ClNios Il Processor
t-Interface Protocols
[#-Memories and Memory Contro
t-Merlin Components
t|-Microcontroller Peripherals
t|-Peripherals L
£-PLL
t|-Csys Interconnect
t|-University Program -
] I +
4 1 b
Messages |
=
Description Fath =)
e 4 Errors |
0 Reset slave is not specified. Please select the reset slave System.nios2_gsys_0 E
0 Exception slave is not specified. Please select the exception slave System nios2_gsys_0 i

4 Errors, 0 Warnings

Figure 7. Inclusion of the Nios II processor in the design.

5. To specify the on-chip memory perform the following:
» Expand the category Memories and Memory Controllers, and then expand to select On-Chip > On-
Chip Memory (RAM or ROM), and click Add

* In the On-Chip Memory Configuration Wizard window, shown in Figure 8, ensure that the Data width
is set to 32 bits and the Total memory size to 4K bytes (4096 bytes)

* Do not change the other default settings
* Click Finish, which returns to the System Contents tab as indicated in Figure 9

Altera Corporation - University Program 9
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 13.0

|

|~ Block Diagram

(} [C] show signals

onchip_memaory2_0

Ellﬂ

1

clock

(==

ot

altera_avalon_snchip_memary2

I 4

4

[™
4. On-Chip Memory (RAM or ROM) - onchip_memary2 g
[

On-Chip Memory (RAM or ROM)

Megacsrs’ altera_avalon_onchip_memary2

-

|' Memory type

Type: RAM (Writable) v |
[] Duak-port access

Single clock operation

Read During Write Mode: DONT_CARE
Block type: AUTO |
|' Size
Data width: 2 |
Total memory size: 4096 bytes

Winimize memory block usage (may impact fmax)

m

|~ Read latency
Slave s1 Latency: 1 |
Slave s2 Latency: 1

[~ Memory initiali

Initialize memory content

[] Enable non-default initialization file

Type the filename (e.g: my_ram.hex) or select the hex file using the file browser button.

User created initialization file: onchip_mem hex

|:| Enable In-System Memory Content Editor feature
Instance ID: NONE

Memory will be initialized from unsaved_onchip_memory2_0.hex

Figure 8. Define the on-chip memory.

6. Observe that while the Nios II processor and the on-chip memory have been included in the design, no con-
nections between these components have been established. To specify the desired connections, examine the
Connections area in the window in Figure 9. The connections already made are indicated by filled circles
and the other possible connections by empty circles, as indicated in Figure 10.

Clicking on an empty circle makes a connection. Clicking on a filled circle removes the connection.

Make the following connections:

* Clock inputs of the processor and the memory to the clock output of the clock component

* Reset inputs of the processor and the memory to both the reset output of the clock component and the
jtag_debug_module_reset output

* The s/ input of the memory to both the data_master and instruction_master outputs of the processor

The resulting connections are shown in Figure 11.

10

Altera Corporation - University Program

May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

H
BN
File Edit System View Tools Help
Component Library System Contents | Address Map | Clock Settings | Project Settings | P | system | HoL Example | Generation|
A4 ® B Use Connections Name Description Export Clock Base End IRQ
Project P X B clk_0 Clock Source
L New C it B clk_in Clock Input clk
System . clk_in_reset Reset Input reset
Library = cl Clock Output ck_0
- Bridges A clk_reset Reset Output
-Clock and Reset - B nios2_gsys_ 0 Mios Il Processor
t|-Configuration & Programming = cli Clock nput unconnected
-DSP reset_n Reset Input [k
-Embedded Processors ? data_master \&valon Memory Mapped Master [cik] IRQ 0| IRQ 31—
-Interface Protocols instruction_master \&valon Memory Mapped Master [cik]
=]-Memories and Memory Contro| = ftag_debug_module_reset |Reset Output [clk)
External Memory Interface W ftag_debug_module \avalon Memory Mapped Slave [cik] 0x0800 (0x0DE£E
&-On-Chip *— custom_instructien_mas... |Custom Instruction Master
- ® Avalon-ST Dual € Bl onchip_memory2_0 On-Chip Memory (RAM or ROM)
Avalon-ST Multi-C clk1 Clock Input unconnected
Avalon-5T Round 31 /Avalon Memory Mapped Slave [clk1]
5 Avalon-5T Single reset Reset Input [clk1]
-+ @ On-Chip FIFO Mer|
[} C'n-Chip Memory
t-Merlin Components
t|-Microcontroller Peripherals
t|-Peripherals
7-PLL
t|-Qsys Interconnect 57
4 L 3
Messages |
Description Path
e 6 Errors &
(]
0 Reset slave is not specified. Please select the reset slave System.nios2_gsys_0
0 Exception slave is not specified. Please select the exception slave System nios2_gsys_0 e
6 Errors, 1 Warning
Figure 9. The on-chip memory included on a DE-series board.
Connections Description Export
k Sourc
Clock Source
Clock Input clk
clk_in_reset Rezet Input reset
clk Clock Qutput
clk_reset Reset Output
E nios2_qgsys_0 Nios Il Processor
clk Clock Input
reset_n Reszet Input
data_master Avalon Memory Mapped Master
instruction_master Avalon Memory Mapped Master
ftag_debug_module_re.. |Reset Output
ftag_debug_module Avalon Memory Mapped Slave
w—, custom_instruction_m... |Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAK or ROM))
clk1 Clock Input
81 Avalon Memory Mapped Slave
reset] Rezet Input
Figure 10. Connections that can be made.
Altera Corporation - University Program 11

May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

Connections Name Description Export
clk_in Clock Input clk
clk_in_reset Rezet Input reset

——— clk Clock Cutput
——————— clk_reset Reset Output
E nios2_qgsys_0 Nios Il Processor
clk Clock Input
reset_n Reszet Input
— data_master Avalon Memory Mapped Master
—— instruction_master Avalon Memory Mapped Master
— ftag_debug_module_re.. |Reset Output
ftag_debug_module Avalon Memory Mapped Slave
w—, custom_instruction_m... |Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAK or ROM))
clk1 Clock Input
81 Avalon Memory Mapped Slave
reset] Rezet Input

Figure 11. The connections that are now established.

7. Specify the input parallel I/O interface as follows:
* Select Peripherals > Microcontroller Peripherals > PIO (Parallel I/O) and click Add to reach the
PIO Configuration Wizard in Figure 12

* Specify the width of the port to be 8 bits and choose the direction of the port to be Input, as shown in the
figure.

¢ Click Finish.

Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

PIO (Parallel /0
K)

altera_avalon_pio
Megaters . P!
4 4
o

' |' Basic Settings |
Width (1-32 bits) 5

[~ Block Diagram |

[] show signals

Direction:

pio_O

" 9
ﬁiclock @ InQut

eset

() Output
il

I
External_connedlcn .
canduit

Output Port Reset Value: | 0:0000000000000000

[~ Output Regi |

Enable individual bit setting/clearing

altera_avalon_pio

|' Edge capture register |
|:| Synchronously capture

Edge Type: RISING

Enable bit-clearing for edge capture register

[* Interrupt
|| Generate IRQ
IRQ Type: LEVEL

Level: Interrupt CPU when any unmasked I'D pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronoug capture is enabled

|* Test bench wiring
[Hardwire PIO inputs in test bench

Drive inputs to: 0x0000000000000000

@ Info: pio_0: PIO inputs are not hardwired in test bench. Undefined values wil be read from PIO inputs during simulation. ‘

Figure 12. Define a parallel input interface.

8. In the same way, specify the output parallel I/O interface:
* Select Peripherals > Microcontroller Peripherals > PIO (Parallel I/O) and click Add to reach the
PIO Configuration Wizard again
* Specify the width of the port to be 8 bits and choose the direction of the port to be Output.
* Click Finish to return to the System Contents tab

9. Specify the necessary connections for the two PIOs:

* Clock input of the PIO to the clock output of the clock component

* Reset input of the PIO to the reset output of the clock component and the jtag_debug _module_reset
output

* The s/ input of the P1O the data_master output of the processor

The resulting design is depicted in Figure 13.

Altera Corporation - University Program 13
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

14

System Contents. | Address Map | Clock Settings I Project Seﬂingsl Instance Parametersl System Inspectnrl HOL F_xamp\el Generatinn|
1
4F Use Connections Name Description Export Clock Base End IRQ
b 4 = clk 0 Clock Source
L::n clk_in Clock Input clk
. clk_in_reset Reset Input reset
= — clk Clock Output clk_0
A — clk_reset Reset Output
7 E nios2_gsys_0 Nios Il Processor
clk Clock Input clk_0
= reset_n Reset Input [clk]
? —— data_master Avalon Memory Mapped Master [clk] IRG Of IRD 31—
—— instruction_master Avalon Memory Mapped Master [clk]
—(jtag_debug_module_re...[Reset Output [clk]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x0800 |0x0££f
— custom_instructien_m... [Custom Instruction Master
E onchip_memory2_0 On-Chip Memory (RAM or ROM)|
clk1 Clock Input clk_0
=1 (Avalon Memory Mapped Slave [clk1] 0x0000 |0x0££f
resetl Reset Input [clk1]
= pio_0 PIO (Parallel 1O}
clk Clock Input clk_0
reset Reset Input [clk]
=1 Avalon Memory Mapped Slave [clk] 0x0000 |0x000F
o external_connection Conduit Endpoint
B pio_1 PIO (Parallel D))
clk Clock Input clk_0
reset Reset Input [clk]
=1 (Avalon Memory Mapped Slave [clk] 0x0000 |0x000F
o— external_connection Conduit Endpoint

Figure 13. The system with all components and connections.

10. We wish to connect to a host computer and provide a means for communication between the Nios II system
and the host computer. This can be accomplished by instantiating the JTAG UART interface as follows:

* Select Interface Protocols > Serial > JTAG UART and click Add to reach the JTAG UART Configu-
ration Wizard in Figure 14

* Do not change the default settings
* Click Finish to return to the System Contents tab

Connect the JTAG UART to the clock, reset and data-master ports, as was done for the PIOs. Connect the
Interrupt Request (IRQ) line from the JTAG UART to the Nios II processor by selecting the connection under
the IRQ column, as shown in Figure 15. Once the connection is made, a box with the number 0 inside will
appear on the connection. The Nios II processor has 32 interrupt ports ranging from O to 31, and the number
in this box selects which port will be used for this IRQ. Click on the box and change it to use port 5.

Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 13.0

%& JTAGUART
Megatore’ alttera_avalon_jtag_uart

| [+ Write FIFO (Data from Avalon to JTAG)

|~ Block Diagram

[Show signals

Buffer depth (bytes):
IRQ threshold:

|:| Construct using registers instead of memory blocks

jtag_uart_0

|' Read FIFO (Data from JTAG to Aval

&Ik intermupt
reset Buffer depth (byles): g4 -
pavalon_ftag_slave | oo RQ threshold :|

|:| Construct using registers instead of memory blocks

altera_avalon_jtag_uart

|' Allow multiple connections
[Allow muttiple connections to Avalon JTAG slave

Figure 14. Define the JTAG UART interface.

Altera Corporation - University Program

May 2013

15

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

System Contents | Address Map | Clock Settings | Project SEﬂingsl Instance F‘arametersl System Inspectnrl HOL Example | Generation

< K 4b M EIX+

Use Connections Name Description Export Clock Base End IR
B clk_0 Clock Source
clk_in Clock Input clk
clk_in_reset Reset Input reset
e clk Clock Output clk_0
—— clk_reset Reset Output
B nios2_gsys_0 Nios Il Processor
clk Clock Input clk_0
reszet_n Reset Input [clk]
— data_master Avalon Memory Mapped Master [clk] IRG Of IRQ 31f—
— instruction_master Avalon Memory Mapped Master [clk]
— jtag_debug_module_re...|Reset Output [clk]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x0800 |Ox0fff
H— custom_instruction_m... |Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAM or ROM)
clkl Clock Input clk_0
=81 Avalon Memory Mapped Slave [clk1] 0x0000 |Ox0fff
resetl Reset Input [clk1]
B pio_ 0 PIO (Parallel VO}
clk Clock Input clk_0
reset Reset Input [clk]
=1 Avalon Memory Mapped Slave [clk] 0x0000 |0x000£
— external_connection Conduit Endpoint
E pio_1 PIO (Parallel VD)
clk Clock Input clk_0
reset Reset Input [clk]
=81 Avalon Memory Mapped Slave [clk] 0x0000 |0x000£
— external_connection Conduit Endpoint
L clk Clock Input clk_0
l——l—) reset Reset Input [clk]
s avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0000 |[0x0007 >—5|

Figure 15. Connect the IRQ line from the JTAG UART to the Nios II processor.

11. Note that the Qsys tool automatically chooses names for the various components. The names are not neces-

16

sarily descriptive enough to be easily associated with the target design, but they can be changed. In Figure 2,
we use the names Switches and LEDs for the parallel input and output interfaces, respectively. These names
can be used in the implemented system. Right-click on the pio_0 name and then select Rename. Change the
name to swiftches. Similarly, change pio_1 to LEDs. Figure 16 shows the system with name changes that we
made for all components.

Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

System Contents | Address Hapl Clock SEﬂingsl Project SEﬂingsl Instance F‘arametersl System Inspectnrl HOL Example I Generatinn|
aF Use Connections Name Description Export Clock Base End IR
X = clk 0 Clock Source
E- clk_in Clock Input clk
. clk_in_reset Rezet Input reset
= — clk Clock Output ck_0
e —— clk_reset Reset Output
- B nios2_gsys_0 Nios Il Processor
clk Clock Input clk_0
= reszet_n Reszet Input [clk]
? — data_master Avalon Memory Mapped Master [clk] IRG O] IRD 31f—
— instruction_master Avalon Memory Mapped Master [clk]
— jtag_debug_module_reset [Reset Output [clk]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x0800 |0x0Ef££E
H— custom_instruction_mas. .. |Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAK or ROM})
clkl Clock Input clk_0
=81 Avalon Memory Mapped Slave [clk1] 0x0000 |Ox0Ef£E
resetl Rezet Input [clk1]
B switches PIO (Parallel 'O}
clk Clock Input clk_0
reset Reszet Input [clk]
=1 Avalon Memory Mapped Slave [clk] 0x0000 |0x000£
— external_connection Conduit
E LEDs PIO (Parallel 'O}
clk Clock Input clk_0
reset Rezet Input [=14]
=81 Avalon Memory Mapped Slave [=14] 0x0000 |0x000£
— external_connection Conduit
E jtag_uart_0 JTAG UART
clk Clock Input clk_0
reset Reszet Input [clk]
s avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0000 |0x0007 >—E|

Figure 16. The system with all components appropriately named.

12. Observe that the base and end addresses of the various components in the designed system have not been
properly assigned. These addresses can be assigned by the user, but they can also be assigned automatically
by the Qsys tool. We will choose the latter possibility. However, we want to make sure that the on-chip
memory has the base address of zero. Double-click on the Base address for the on-chip memory in the Qsys
window and enter the address 0x00000000. Then, lock this address by clicking on the adjacent lock symbol.
Now, let Qsys assign the rest of the addresses by selecting System > Assign Base Addresses (at the top of
the window), which produces an assignment similar to that shown in Figure 17.

Altera Corporation - University Program 17
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

18

System Contents | Address Mapl Clock Settingsl Project Settingsl Instance Pararnetersl System Inspecturl HOL F_xamplel Generatiunl

an Use Connections Name Description Export Clock Base End IRQ
= clk_0 Clock Source

b 4
L.: clk_in Clock Input clk
. clk_in_reset Reset Input reset
= — clk Clock Output clk_0
F' — clk_reset Reset Output
= B nios2_qsys_0 Mios Il Processor
clk Clock Input clk_0
= rezet_n Reset Input [clk]
? —_— data_master Avalon Memory Mapped Master [clk] IRG 0| IRD 31—
S E— instruction_master Avalon Memory Mapped Master [clk]
—_ ftag_debug_medule_reset [Reset Output [clk]
ftag_debug_module Avalon Memory Mapped Slave [clk] Ox1800 |[Oxl1fEfs
H— custom_instructien_mas... [Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAM or ROM)
clk1 Clock Input clk_0
=1 Avalon Memory Mapped Slave [clk1] & 0x0000 |Ox0E£EE
resetl Reset Input [clk1]
B switches PIO (Parallel VO}
clk Clock Input clk_0
reset Reset Input [clk]
=1 Avalon Memory Mapped Slave [clk] 0x2000 |0xzZ00%
— external_connection Conduit
= LEDs PIC (Parallel KO}
clk Clock Input clk_0
reset Reset Input [clk]
=1 Avalon Memory Mapped Slave [clk] 0x2010 [OxZ201%
— external_connection Conduit
B jtag_uart_0 JTAG UART
clk Clock Input clk_0
reset Reset Input [clk]
— avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x2020 |0xZ2027 >—E|

Figure 17. The system with assigned addresses.

13. The behavior of the Nios II processor when it is reset is defined by its reset vector. It is the location in the
memory device from which the processor fetches the next instruction when it is reset. Similarly, the exception
vector is the memory address of the instruction that the processor executes when an interrupt is raised. To
specify these two parameters, perform the following:

* Right-click on the nios2_processor component in the window displayed in Figure 17, and then select
Edit to reach the window in Figure 18

* Select onchip_memory to be the memory device for both reset and exception vectors, as shown in Fig-
ure 18

* Do not change the default settings for offsets
* Observe that the error messages dealing with memory assignments shown in Figure 6 will now disappear

* Click Finish to return to the System Contents tab

Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

[™
“ Nios Il Processor

Megatore’ altera_nios2_gsys

1 -
M il
Core Nios Il | caches and Memory Interfaces | Advanced Features | MMU and MPU Settings | JTAG Debug Mogule
|~ select a Nios Il Core |
Nies Il Core: @ Nios Ve
() Nios lis
) Nios IWf
Nios llfe Nios /s Nios II/f
. RISC RISC RISC
Nios Il 32-bit 32-bit 320t
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction L
Hardware Multiply Hardware Multiphy T
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Memory Usage (e.g Stratix V) | Two M3Ks (or equiv.) Two MI9Ks + cache Three M3Ks + cache
|+ Hardware Arithmetic Operation
Hardware muttiplication type: Embedded Multipliers
Hardware divide
"~ Reset Vector
Reset vector memory: onchip_memory2_0.s1 - L4
Reset vector offset: 0x00000000
Reset vector: 000000000
= ion Vector
Exception vector memory: .Dncnipfmemnrﬂiﬂ 51 —
Exception vector offset: 000000020
Exception vector: 0x00000020

Figure 18. Define the reset and exception vectors.

14. So far, we have specified all connections inside our nios_system circuit. It is also necessary to specify con-
nections to external components, which are switches and LEDs in our case. To accomplish this, double click
on Double-click (in the Export column of the System Contents tab) for external_connection of the switches
PIO, and type the name switches. Similarly, establish the external connection for the lights, called leds. This
completes the specification of our nios_system, which is depicted in Figure 19.

Altera Corporation - University Program 19
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

System Contents | Address Hapl Clock Seﬁingsl Project Seﬁingsl Instance Pararnetersl System Inspedurl HOL Examplel Generaﬁnnl

=4 Uze Connections Name Description Export Clock Basze End IR
= ek 0 Clock Source

b 4
E clk_in Clock Input clk
. clk_in_reset Reset Input reset
= — clk Clock Output clk_0
e ——— clk_reset Reset Output
- E nios2_qgsys_0 Nios Il Processor
clk Clock Input clk_0
= reset_n Reset Input [clk]
? — data_master Avalon Memory Mapped Master [clk] IRG O] IRD 31—
—— instruction_master Avalon Memory Mapped Master [clk]
—, ftag_debug_module_reset [Reset Output [clk]
ftag_debug_module Avalon Memory Mapped Slave [clk] 0x1800 |Ox1££fE
w— custom_instruction_mas... [Custom Instruction Master
B onchip_memory2_0 On-Chip Memory (RAM or ROM)
clk1 Clock Input clk_0
81 Avalon Memory Mapped Slave [clk1] & 0x0000 |0xOEEE
reset] Reset Input [clk1]
B switches PIO (Parallel VO}
clk Clock Input clk_0
reset Reset Input [clk]
=1 Avalon Memory Mapped Slave [clk] 0x2000 |0x200£
external_connection Conduit switches
E LEDs PIO (Parallel VD)
clk Clock Input clk_0
reset Reset Input [clk]
81 Avalon Memory Mapped Slave [clk] 0x2010 |0x201£
external_connection Conduit leds
B jtag_uart_0 JTAG UART
clk Clock Input clk_0
reset Reset Input [clk]
3 avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x2020 |0x2027 >—E|

Figure 19. The complete system.

15. Having specified all components needed to implement the desired system, it can now be generated. Save the
specified system; we used the name nios_system. Then, select the Generation tab, which leads to the window
in Figure 20. Select None for the options Simulation > Create simulation model and Testbench System
> Create testbench Qsys system, because in this tutorial we will not deal with the simulation of hardware.
Click Generate on the bottom of the window. When successfully completed, the generation process produces
the message “Generate Completed".

Exit the Qsys tool to return to the main Quartus II window.

20 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

r]

File Edit System View Tools Help

Component Library | | system Contents | Adress Map | Ciock Settngs | Project Settings | instance Parameters | System Inspector | HDL Example| Generation |
4 X [~ si

Project The simulation model contains generated HOL files for the simulator, and may include simulation-only features.
New Component.. 1

Create simulation model: Hone -

-System
leral.'y ~ Testbench System
t|-Bridges
H-Clock and Reset The testbench system is a new Osys system that instantiates the original system, adding bus functional medels to drive the top-level interfaces.
+-Configuration & Programming Once generated, the bus functional models can interact with the system in the simulator.
|-DSP Create testbench Qsys system: [None -l
t-Embedded Frocessors Create testbench simulation model: | ypne
finterface Frotocols|
[#l-Memories and Memory Controllers |' Synthesis
t-Merlin Components
#-Microcontroller Peripherals Synthesis files are used to compile the system in a Quartus Il project.
t|-Peripherals Create HDL design files for synthesis: [veriog - |

H-PLL
t-Qsys Interconnect
t|-University Program

Create block symbol file { bsf)

H-Verification [~ Output Directory |
[#-Window Bridge Path: Di/gsys_tutorialnios_system B
Simulation
Testbench:
Synthesis: D:lgsys_tutorialnios_system/synthesis/
] m +
Messages |
Description Path

@ 1Info Message

@ PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inpute during simulation. System.pio_0

0 Errors, 0 Warnings

Figure 20. Generation of the system.

Changes to the designed system are easily made at any time by reopening the Qsys tool. Any component in the
System Contents tab of the Qsys tool can be selected and edited or deleted, or a new component can be added and
the system regenerated.

5 Integration of the Nios Il System into a Quartus Il Project

To complete the hardware design, we have to perform the following:

* Instantiate the module generated by the Qsys tool into the Quartus II project
* Assign the FPGA pins
* Compile the designed circuit

* Program and configure the FPGA device on the DE2-115 board

Altera Corporation - University Program 21
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

5.1 Instantiation of the Module Generated by the Qsys Tool

The Qsys tool generates a Verilog module that defines the desired Nios II system. In our design, this module will have
been generated in the nios_system.v file, which can be found in the directory gsys_tutorial/nios_system/synthesis of
the project. The Qsys tool generates Verilog modules, which can then be used in designs specified using either
Verilog or VHDL languages.

Normally, the Nios II module generated by the Qsys tool is likely to be a part of a larger design. However, in the
case of our simple example there is no other circuitry needed. All we need to do is instantiate the Nios II system in
our top-level Verilog or VHDL module, and connect inputs and outputs of the parallel I/O ports, as well as the clock
and reset inputs, to the appropriate pins on the FPGA device.

The Verilog code in the nios_system.v file is quite large. Figure 21 depicts the portion of the code that defines the
input and output ports for the module nios_system. The 8-bit vector that is the input to the parallel port switches is
called switches_export. The 8-bit output vector is called leds_export. The clock and reset signals are called clk_clk
and reset_reset_n, respectively. Note that the reset signal was added automatically by the Qsys tool; it is called
reset_reset_n because it is active low.

module nios system |
input wire [7:0] switches export, S awitches.export

output wire [7:0] leds export, £ leds.export
input wire reset_reset n, £ reset.reset_n
input wire clk clk £ clk.clk

Figure 21. A part of the generated Verilog module.

The nios_system module has to be instantiated in a top-level module that has to be named /lights, because this is the
name we specified in Figure 3 for the top-level design entity in our Quartus II project. For the input and output ports
of the lights module we have used the pin names that are specified in the DE2-115 User Manual: CLOCK_50 for the
50-MHz clock, KEY for the pushbutton switches, SW for the slider switches, and LEDG for the green LEDs. Using
these names simplifies the task of creating the needed pin assignments.

5.1.1 Instantiation in a Verilog Module

Figure 22 shows a top-level Verilog module that instantiates the Nios II system. If using Verilog for the tutorial, type
this code into a file called lights.v, or use the file provided with this tutorial.

22 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

// Implements a simple Nios II system for the DE-series board.
/ Inputs: ~ SW7-0 are parallel port inputs to the Nios II system
/" CLOCK_50 is the system clock
/! KEYO is the active-low system reset
// Outputs: LEDG7-0 are parallel port outputs from the Nios II system
module lights (CLOCK_50, SW, KEY, LEDG);
input CLOCK_50;
input [7:0] SW;
input [0:0] KEY;
output [7:0] LEDG;
// Instantiate the Nios II system module generated by the Qsys tool:
nios_system NiosII (
.clk_clk(CLOCK_50),
reset_reset_n(KEY),
.switches_export(SW),
Jdeds_export(LEDG));
endmodule

Figure 22. Instantiating the Nios II system using Verilog code.

5.1.2 Instantiation in a VHDL Module

Figure 23 shows a top-level VHDL module that instantiates the Nios II system. If using VHDL for the tutorial, type
this code into a file called lights.vhd, or use the file provided with this tutorial.

Altera Corporation - University Program 23
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

—— Implements a simple Nios II system for the DE-series board.

—— Inputs: SW7-0 are parallel port inputs to the Nios II system

—— CLOCK_50 is the system clock

- KEYO is the active-low system reset

—— Outputs: LEDG7-0 are parallel port outputs from the Nios II system

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY lights IS

PORT (
CLOCK_50 : IN STD_LOGIC;
KEY : IN STD_LOGIC_VECTOR (0 DOWNTO 0);
SW : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
LEDG : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);

END lights;

ARCHITECTURE lights_rtl OF lights IS
COMPONENT nios_system
PORT (
SIGNAL clk_clk: IN STD_LOGIC;
SIGNAL reset_reset_n : IN STD_LOGIC;
SIGNAL switches_export : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL leds_export : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
)
END COMPONENT;
BEGIN
NioslI : nios_system
PORT MAP(
clk_clk => CLOCK_50,
reset_reset_n => KEY(0),
switches_export => SW(7 DOWNTO 0),
leds_export => LEDG(7 DOWNTO 0)
)
END lights_rtl;

Figure 23. Instantiating the Nios II system using VHDL code.

Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

6 Compiling the Quartus Il Project

Add the lights.v/vhd file to your Quartus II project. Also, add the necessary pin assignments for the DE-series board
to your project. The procedure for making pin assignments is described in the tutorial Quartus Il Introduction Using
Verilog/VHDL Designs. Note that an easy way of making the pin assignments when we use the same pin names as
in the DE2-115 User Manual is to import the assignments from a Quartus II Setting File with Pin Assignments. For
example, the pin assignments for the DE2-115 board are provided in the DE2-115.gsf file, which can be found on
Altera’s DE2-115 web pages.

Since the system we are designing needs to operate at a 50-MHz clock frequency, we can add the needed timing
assignment in the Quartus II project. The tutorial Using TimeQuest Timing Analyzer shows how this is done. How-
ever, for our simple design, we can rely on the default timing assignment that the Quartus II compiler assumes in
the absence of a specific specification. The compiler assumes that the circuit has to be able to operate at a clock
frequency of 1 GHz, and will produce an implementation that either meets this requirement or comes as close to it
as possible.

Finally, before compiling the project, it is necessary to add the nios_system.qip file (IP Variation file) in the directory
gsys_tutorial/nios_system/synthesis to your Quartus II project. Then, compile the project. You may see some warn-
ing messages associated with the Nios II system, such as some signals being unused or having wrong bit-lengths of
vectors; these warnings can be ignored.

7 Using the Altera Monitor Program to Download the Designed Circuit and Run an Appli-
cation Program

The designed circuit has to be downloaded into the FPGA device on a DE-series board. This can be done by using
the Programmer Tool in the Quartus II software. However, we will use a simpler approach by using the Altera
Monitor Program, which provides a simple means for downloading the circuit into the FPGA as well as running the
application programs.

A parallel I/O interface generated by the Qsys tool is accessible by means of registers in the interface. Depending
on how the PIO is configured, there may be as many as four registers. One of these registers is called the Data
register. In a PIO configured as an input interface, the data read from the Data register is the data currently present
on the PIO input lines. In a PIO configured as an output interface, the data written (by the Nios II processor) into the
Data register drives the PIO output lines. If a PIO is configured as a bidirectional interface, then the PIO inputs and
outputs use the same physical lines. In this case there is a Data Direction register included, which determines the
direction of the input/output transfer. In our unidirectional PIOs, it is only necessary to have the Data register. The
addresses assigned by the Qsys tool are 0x00002000 for the Data register in the PIO called switches and 0x00002010
for the Data register in the PIO called LEDs, as indicated in Figure 17.

Our application task is very simple. A pattern selected by the current setting of slider switches has to be displayed
on the LEDs. We will show how this can be done in both Nios II assembly language and C programming language.

Altera Corporation - University Program 25
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

7.1 A Nios Il Assembly Language Program

Figure 23 gives a Nios II assembly-language program that implements our task. The program loads the addresses of
the Data registers in the two PIOs into processor registers r2 and r3. It then has an infinite loop that merely transfers
the data from the input P1O, switches, to the output PIO, leds.

.equ switches, 0x00002000
.equ leds, 0x00002010
.global _start
_start: movia 12, switches
movia 13, leds
LOOP: Idbio r4, 0(r2)
stbio r4, 0(r3)
br LOOP
.end

Figure 24. Assembly-language code to control the lights.

The directive .global _start indicates to the Assembler that the label _start is accessible outside the assembled
object file. This label is the default label we use to indicate to the Linker program the beginning of the application
program.

For a detailed explanation of the Nios II assembly language instructions see the tutorial Introduction to the Altera
Nios II Soft Processor, which is available on Altera’s University Program website.

Enter this code into a file lights.s, or use the file provided with this tutorial, and place the file into a working directory.
We placed the file into the directory gsys_tutorial\app_software.

7.2 A C-Language Program

An application program written in the C language can be handled in the same way as the assembly-language pro-
gram. A C program that implements our simple task is given in Figure 24. Enter this code into a file called lights.c,
or use the file provided with this tutorial, and place the file into a working directory.

#define switches (volatile char *) 0x0002000
#define leds (char *) 0x0002010
void main()
{ while (1)
*leds = *switches;

}

Figure 25. C-language code to control the lights.

26 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

7.3 Using the Altera Monitor Program

The Altera University Program provides the monitor software, called Altera Monitor Program, for use with the DE-
series boards. This software provides a simple means for compiling, assembling and downloading of programs onto
a DE-series board. It also makes it possible for the user to perform debugging tasks. A description of this software
is available in the Altera Monitor Program tutorial. We should also note that other Nios II development systems are
provided by Altera, for use in commercial development. Although we will use the Altera Monitor Program in this
tutorial, the other Nios II tools available from Altera could alternatively be used with our designed hardware system.

Open the Altera Monitor Program, which leads to the window in Figure 26.

r [r———
i Altera Menitor Program [Mios II] EIL

Eile Settings Actions Windows Help

HE BB 2pnl @
Disassembly *. | Registers

Goto instruction‘ Address (hex) or symbol namr::| | Go Mw

-

L4 N
Disassemhlyj Bleakpoinisj Memmy/f Watchszlace/f

Terminal — | Info & Errors Y

Info & Errors j‘ GDB Server /J‘

Figure 26. The Altera Monitor Program main window.

Altera Corporation - University Program 27
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

The monitor program needs to know the characteristics of the designed Nios II system, which are given in the file
nios_system.qsys. Click the File > New Project menu item to display the New Project Wizard window, shown in
Figure 27, and perform the following steps:

1. Enter the gsys_tutorial\app_software directory as the Project directory by typing it directly into the Project
directory field, or by browsing to it using the Browse... button.

2. Enter lights_example (or some other name) as the Project name and click Next, leading to Figure 28.

g I
e D ==
|

| Specify a project name and directory

Project directory:

Dhgsys_tutoriahapp_software Browse...
||

Project name:

|Iights_examp|e |

< Back | Mext = | Finizh | | Cancel

Figure 27. Specify the project directory and name.

28 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

— ™
e DI =

Specify a system
I rSelect a system
| |-<Custom Systemn> "| | Documentation

Specify a Mios I system by selecting a system description (PTF, Qsys) file, and opticnal Quartus II
pregramming (50F) and Quartus DJTAG debugging infermation (JDT) files.

- System details
System description file (PTF, Qsys or SOPCInfo):

|D:\qsys_tutorial\nios_system.qsys | | E-rowse...|

Quartus I pregramming (SOF) file (opticnal):

|D:\qsys_tutoria|\Dutput_files\lights.sof | | E-mwse...|

The SOF file represents the FPGA programming file for the Nios I system, If it is specified here, then the
Menitor Program can be used to download this programming file ente the board. Otherwise, the system will
need to be downloaded using some other method (for example, by using Quartus I,

Quartus IJTAG debugging infermation (JDI) file (optienal):

| | E-rowse...|

The JDI file is required for multiprocessor systems designed in Qsys, It stores the JTAG Device IDs, These IDs
are needed for communication between the Monitor Program and the systern's multiple processors and JTAG
UARTs .

< Back |Ne_fn't>| Finish Cancel

Figure 28. The System Specification window.

3. From the Select a System drop-down box select Custom System, which specifies that you wish to use the
hardware that you designed.

Click Browse... beside the System description field to display a file selection window and choose the
nios_system.qgsys file. Note that this file is in the design directory gsys_tutorial.

Select the lights.sof file in the Quartus Il programming (SOF) file field, which provides the information
needed to download the designed system into the FPGA device on the DE-series board. Click Next, which
leads to the window in Figure 29.

Altera Corporation - University Program 29
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

T ™
—rerrre I ==

Specify a program type

Program Type: |Assembhr Program v|

Lets you specify a program written in assembly language.

[Include a sample program with the project

< Back |Ne1rk>| Finish Cancel

Figure 29. Specification of the program type.

4. If you wish to use a Nios IT assembly-language application program, select Assembly Program as the pro-
gram type from the drop-down menu. If you wish to use a C-language program, select C Program. Click
Next, leading to Figure 30.

5. Click Add... to display a file selection window and choose the lights.s file, or lights.c for a C program, and
click Select. We placed the application-software files in the directory gsys_tutorial\app_software. Upon
returning to the window in Figure 30, click Next.

30 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

< New Project Wizard

Specify program details

~Source files

First source file is used to determine the name of the binary program file.

Di\gsys_tuterial\app_seftwarehlights.s Add...

r Program options
Start symbol | _start

Down
|

| <Back|| Next> || Finish | | Cancel|

Figure 30. Specify the application program to use.

6. In the window in Figure 31, ensure that the Host Connection is set to USB-Blaster, the Processor is set to
nios2_processor and the Terminal Device is set to jtag_uart. Click Next.

Altera Corporation - University Program 31
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

- ™
e DI =

| Specify system parameters

~System parameters

||| Host connection: USB-Blaster [USB-0] ~| | Refresh |

Processon |r1i.052_qsys_0 '|

Reset vector address: 000000000
Exception vector address: (00000020

Terminal device: |jta.g._ua:t_0 '|

< Back | Mext > | Finish | | Cancel

Figure 31. Specify the system parameters.

7. The Monitor Program also needs to know where to load the application program. In our case, this is the mem-
ory block in the FPGA device. The name assigned to this memory is onchip_memory. Since there is no other
memory in our design, the Monitor Program will select this memory by default, as shown in Figure 32.

Having provided the necessary information, click Finish to confirm the system configuration. When a pop-up
box asks you if you want to have your system downloaded onto the DE-series board click Yes.

32 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

oo P $Z ==
Specify program memory settings

rProcessor’s reset and exception vectors (read-only)

|| Reset vector address: (x00000000
Exception vector address: 000000020
rMemory options

Here you can specify the starting addresses of sections identified by .text and .data assembler directives.
These addresses can be in the same or in different memories (en-chip, SDRAM, ...). They can be used to
ensure that the .text and .data sections do not overlap with other sections, such as .reset and .exceptions. If
text and .data are specified to have the same address, the .data section will be placed right after the .text
section by the linker.

.text section
Memory device: ||unchip_memm}r2_ﬂ';‘sl (0o - Duef 1) '"
Start offset in device (hex): | 0|
r.data section
Memory device: |unchip_memm}r2_ﬂ';‘sl (00D - OueffF) '|
Start offset in device (hex): | 0|

| <Back| | Nest - || Einish | | Cancel|

Figure 32. Specify where the program will be loaded in the memory.

8. Now, in the monitor window in Figure 26 select Actions > Compile & Load to assemble (compile in the case
of a C program) and download your program.

9. The downloaded program is shown in Figure 33. Run the program and verify the correctnes of the designed
system by setting the slider switches to a few different patterns.

Altera Corporation - University Program 33
May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL

For Quartus II 13.0

34

Eile Settings Actions Windows Help

HE B+E @000k &F$
Disassembly — * | Registers - X
Goto llstl'l.l:tll‘l‘ Address (hex) or symboel name: |5r:. | Reg | Value
= lpc 0x00000000 | =
~| |zero 0x00000000
.equ switches, 0x0000Z010 rl 0x00000000
.equ leds, O0x0000zZ000 r2 0x00000000
.global _start r3 0x00000000
_start: movia rZ, switches r4 0x00000000
stare: s 0x00000000
0x00000000 00800034 orhi rZ, zero, Ox0 ré 0x00000000
0x00000004 10850404 addi ¥z, r2, Ox2010 7 0x00000000
wovia r3, leds ri 0x00000000
0x00000008 00000034 orhi r3, zero, Ox0 riu gxgggggggg
OxO000000C 18cE0004 addi r3, 3, Oxz000 in ninunununu
) rlz 0x00000000
LOOFP: ldbio r4, O(rz) r13 0x00000000
LOOF: ri4 0x00000000
Ox0o000o0Lo 11000027 1dbio rd, 0{rz) ris 0x00000000
sthio rd, O(ri) [=]| |18 0x00000000
q v ||z27 000000000
. 5 rlg 0x00000000
Disassembly f Breakpoints | Memmy/f Watchszlace/f 1a Ppp—
Terminal — | Info & Errors _
. . . N YyEILLIED VR =
JIRG URRT 11n}_c ESta'b?thd using cable "USB-Blaster Connection established to GDB serwver at localhost:240
[U5B-1]", dewice 1, instance 0x00 Symbols loaded.
Source code loaded.

INFC: Program Trace not enabled, because trace reguirn

D

Info & Errors j‘ GDB Server /J‘

Figure 33. Display of the downloaded program.

Altera Corporation - University Program

May 2013

http://www.altera.com/education/univ/

INTRODUCTION TO THE ALTERA QSYS TooL For Quartus 11 13.0

Copyright ©1991-2013 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

Altera Corporation - University Program 35
May 2013

http://www.altera.com/education/univ/

	1 Introduction
	2 Altera DE-series FPGA Boards
	3 A Digital Hardware System Example
	4 Altera's Qsys Tool
	5 Integration of the Nios II System into a Quartus II Project
	5.1 Instantiation of the Module Generated by the Qsys Tool
	5.1.1 Instantiation in a Verilog Module
	5.1.2 Instantiation in a VHDL Module

	6 Compiling the Quartus II Project
	7 Using the Altera Monitor Program to Download the Designed Circuit and Run an Application Program
	7.1 A Nios II Assembly Language Program
	7.2 A C-Language Program
	7.3 Using the Altera Monitor Program

