7.4 Is the two-band subband coding filter bank containing filters $h 0(n)=\{1 / \sqrt{2}, 1 / \sqrt{2}\}$, $h 1(n)=\{-1 / \sqrt{2}, 1 / \sqrt{2}\}, g 0(n)=\{1 / \sqrt{2}, 1 / \sqrt{2}\}, g 1(n)=\{1 / \sqrt{2},-1 / \sqrt{2}\}$ orthonormal, biorthonormal, or both?
7.9 (a) Compute the Haar transform of the 2×2 image

$$
F=\left[\begin{array}{cc}
3 & -1 \\
6 & 2
\end{array}\right]
$$

(b) The inverse Haar transform is $\mathrm{F}=\mathrm{H}^{\top} T H$, where T is the Haar transform of F and H^{\top} is the matrix inverse of H . Show that $\mathrm{H}_{2}^{-1}=\mathrm{H}_{2}^{\top}$ and use it to compute the inverse Haar transform of the result in (a).
7.12 Write an expression for scaling space V3 as a function of scaling function $\varphi(x)$. Use the Haar scaling function definition of Eq. (7.2-10) to draw he Haar V3 scaling functions at translations $\mathrm{k}=\{0,1,2\}$.
7.20 The computational complexity of an M-point FWT is $O(M)$. That is, the number of operations is proportional M . What determines the constant of proportionality?
7.23 Compute the two-dimensional wavelet transform with respect to Haar wavelets of the 2×2 image in Problem 7.9. Draw the required filter bank and label all inputs and outputs with the proper arrays.

