(Assigned on 3/24, due on 3/31)

7.2 Construct a fully populated approximation pyramid and corresponding prediction residual pyramid for the image.

$$
f(x, y)=\left[\begin{array}{clcl}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right]
$$

Use a 2×2 block neighborhood averaging for the approximation filter in Fig. 7.2(b) and assume the interpolation filter implements pixel replication.
7.6 Compute the coefficients of the Daubechies synthesis filters $g_{0}(n)$ and $g_{1}(n)$ for Example 7.2. Using Eq. (7.1-13) with $\mathrm{m}=0$ only, show that the filters are orthonormal.
7.13 Draw wavelet $\psi_{3,3}(x)$ for the Haar wavelet function. Write an expression for $\psi_{3,3}(x)$ in terms of Haar scaling functions.
7.16 The DWT in Eqs.(7.3-5) an $\mathrm{d}(7.3-6)$ is a function of starting scale j_{0}.
(a) Recompute the one-dimensional DWT of function $f(n)=\{1,4,-3,0\}$ for $0 \leq n \leq 3$ in Example 7.8 with $\mathrm{j}_{0}=1$ (rather than 0).
(b) Use the result from (a) to compute $f(1)$ from the transform values.
7.19 Draw the FWT filter bank required to compute the transform in Problem 7.16. Label all inputs and outputs with the appropriate sequences.

