
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Creating Multiprocessor Nios II Systems
Tutorial

Document Version: 1.4
Document Date: February 2010

TU-N2033005-1.4

http://www.altera.com

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

© February 2010 Altera Corporation
Contents
Chapter 1. Creating Multiprocessor Nios II Systems
Introduction . 1-1
Benefits of Multiprocessor Systems . 1-2
Nios II Multiprocessor Systems . 1-2
Hardware Design Considerations . 1-3

Autonomous Multiprocessors . 1-3
Multiprocessors that Share Resources . 1-4

Sharing Resources in a Multiprocessor System . 1-4
Sharing Memory . 1-6
The Hardware Mutex and Mailbox Cores . 1-7
Sharing Peripherals Between Multiple Processors . 1-8
Multiprocessors and Overlapping Address Space . 1-9

Software Design Considerations . 1-10
Program Memory . 1-10
Boot Addresses . 1-12
Running and Debugging Multiprocessor Systems from the Nios II SBT for Eclipse 1-14

Design Example . 1-15
Hardware and Software Requirements . 1-15
Installation Notes . 1-15
Creating the Hardware System . 1-15

Creating Software for the Multiprocessor System . 1-24
Building the Application and BSP Projects . 1-24
Starting the Nios II SBT for Eclipse . 1-25
Importing the Software Projects . 1-25
Building the Software Projects . 1-26
Creating a Debug Configuration for Each Processor . 1-26
Debugging the Software Projects on the Board . 1-27

Conclusion . 1-27

Additional Information
Revision History . Info-1
Referenced Documents . Info-1
How to Contact Altera . Info-1
Typographic Conventions . Info-2
Creating Multiprocessor Nios II Systems Tutorial

iv
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation

© February 2010 Altera Corporation
1. Creating Multiprocessor Nios II
Systems
This tutorialdescribes thefeaturesof theAltera® Nios® IIprocessorandSOPCBuilder
tool that are useful for creating systems with two or more processors. The tutorial
provides an example design that guides you through a step-by-step process for
building a multiprocessor system containing two processors that access a shared
memory buffer using a mailbox. It shows you how to use the Nios II Software Build
Tools (SBT) for Eclipse to create and debug two software projects, one for each
processor in the system.

f Refer to the Nios II Embedded Design Suite Release Notes and Errata and the MegaCore IP
Library Release Notes and Errata for the latest features, enhancements, and known
issues in the current release.

Introduction
Any system that incorporates two or more microprocessors working together to
perform one or more related tasks is commonly referred to as a multiprocessor
system. Developers using the Altera Nios II processor and SOPC Builder tool can
quickly design and build multiprocessor systems that share resources. SOPC Builder
is a system development tool for creating SOPC design systems that can include
processors, peripherals, and memories. A Nios II processor system typically refers to
a system with a processor core, a set of on-chip peripherals, on-chip memory and
interfaces to off-chip memory all implemented on a single Altera device.

This document describes the features of the Nios II processor and SOPC Builder tool
that are useful for creating systems with two or more processors. This document
provides an example design that guides you through a step-by-step process for
building a multiprocessor system containing two processors that share a mail box and
a memory buffer. Using the Nios II SBT, you create two software projects, one for each
processor in the system. Then you import these two software projects to the Nios II
SBT for Eclipse, and use the Nios II SBT for Eclipse to debug these two software
projects.

After completing this document, you will have the knowledge to perform the
following tasks:

■ Build an SOPC Builder system containing more than one Nios II processor.

■ Safely share resources between processors, avoiding data corruption.

■ Build software projects for multiprocessor systems using the Nios II SBT.

■ DebugmultiplesoftwareprojectsrunningonmultipleprocessorsusingtheNios II
SBT for Eclipse.

This chapter assumes that you are familiar with reading and writing embedded
software and that you have read and followed the step-by-step procedures for
building a microprocessor system in the Nios II Hardware Development Tutorial.

f The Nios II Hardware Development Tutorial can be found on the Literature: Nios II
Processor page.
Creating Multiprocessor Nios II Systems Tutorial
Preliminary

http://www.altera.com/literature/rn/rn_nios2eds.pdf
http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

Chapter 1: Creating Multiprocessor Nios II Systems 1–2
Benefits of Multiprocessor Systems
Benefits of Multiprocessor Systems
Multiprocessor systems possess the benefit of increased performance, but nearly
always at the price of significantly increased system complexity. For this reason, the
use of multiprocessor systems has historically been limited to workstation and
high-end PC computing using a complex method of load-sharing often referred to as
symmetric multiprocessing (SMP). While the overhead of SMP is typically too high
for most embedded systems, the idea of using multiple processors to perform
different tasks and functions on different processors in embedded applications
(asymmetrical) is gaining popularity. Altera FPGAs provide an ideal platform for
developingasymmetricembeddedmultiprocessorsystems,becausethehardwarecan
easily be modified and tuned using the SOPC Builder tool to provide optimal system
performance. Recent increases in the size of Altera FPGAs make possible system
designs with many Nios II processors on a single chip. Furthermore, with a powerful
integration tool like SOPC Builder, different system configurations can be designed,
built, and evaluated very quickly.

Nios II Multiprocessor Systems
The Nios II SBT for Eclipse includes features to help with the creation and debugging
of multiprocessor systems. Multiple Nios II processors are able to efficiently share
systemresourcesthankstothemultimasterfriendlyslave-sidearbitrationcapabilities
of the system interconnect fabric. Since the capabilities of SOPC Builder now allow
users to almost effortlessly add as many processors to a system as desired, the design
focus in building multiprocessor systems no longer lies in the arranging and
connecting of hardware components. The challenge in building multiprocessor
systems now lies in writing the software for those processors so they operate
efficiently together, and do not conflict with one another.

To aid in the prevention of multiple processors interfering with each other,
multiprocessor coordination peripherals, such as a hardware mutex core and a
hardware mailbox core, are included in the Nios II Embedded Design Suite (EDS).
The hardware mutex core allows different processors to claim ownership of a shared
resource for a period of time. This temporary ownership of a resource by a processor
protects the shared resource from corruption by the actions of another processor.

To prevent corruption, you must write software that waits to acquire the mutex before
it accesses the shared resource, ensuring mutually exclusive access. An atomic
test-and-set operation, which cannot be interrupted, allows a processor to check for
ownership and acquire ownership in a single operation, avoiding the potential pitfall
of two processors each confirming that no processor currently has ownership,
followed by both processors acquiring the resource, violating mutual exclusion. The
fact that the operation cannot be interrupted also ensures that an operating system
task switch cannot occur while the processor is acquiring or releasing the mutex.

The hardware mutex core provides a semaphore for mutually exclusive access to any
resource. The software determines that resource and is responsible for using the
mutex core to ensure mutually exclusive access.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–3
Hardware Design Considerations
The hardware mailbox core allows different processors to coordinate with each other
by providing both mutually exclusive access and data exchange in a single resource.
The mailbox hardware core implementation includes the functionality of two mutex
cores, one to guarantee mutually exclusive access for reading from the mailbox and
one to guarantee mutually exclusive access for writing to the mailbox.

For more information about mutually exclusive access to shared memory, refer to
“The Hardware Mutex and Mailbox Cores” on page 1–7.

The Nios II SBT for Eclipse supports software debug on multiprocessor systems, by
allowing users to launch and stop software debug sessions on simultaneously
running processors.

Hardware Design Considerations
Nios II multiprocessor systems are split into two main categories, those that share
resources, and those in which each processor is autonomous and does not share
resources with other processors.

Autonomous Multiprocessors
While autonomous multiprocessor systems contain multiple processors, these
processors are completely autonomous and do not communicate with the others,
much as if they were completely separate systems. Systems of this type are typically
less complicated and pose fewer challenges because by design, they do not share
resourcesandsothesystem'sprocessorsare incapableof interferingwitheachother's
operation. Figure 1–1 shows a block diagram of two autonomous processors in a
multiprocessor system.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–4
Sharing Resources in a Multiprocessor System
Multiprocessors that Share Resources
Multiprocessor systems that share resources can pose many more challenges. While
the Nios II EDS includes features making it possible to reliably implement
multiprocessor systems that share resources, the creation of such systems is not
necessarily a straightforward venture. Altera recommends that you complete this
tutorial and fully understand its recommendations before attempting to create a
resource-sharing multiprocessor system.

Sharing Resources in a Multiprocessor System
Resources are considered shared when they are available to be accessed by more than
one processor. The SOPC Builder connections panel controls which hardware
components can be accessed by each individual Nios II processor.

Shared resources can be a very powerful aspect of multiprocessor systems, but care
must be taken when deciding which system resources are shared, and how the
different processors will cooperate regarding the use of resources. Figure 1–2 shows a
block diagram of a sample multiprocessor system in which two processors share an
on-chip memory.

Figure 1–1. Autonomous Multiprocessor System

Processor 1

Processor 2

Memory 1

UART 1

Timer 1

Memory 2

UART 2

Timer 2
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–5
Sharing Resources in a Multiprocessor System
Resources can be made shareable by simply connecting them to multiple processor
bus masters in the connection matrix of SOPC Builder, but that in no way guarantees
that theprocessorsthatsharethemwilldosonon-destructively.Thesoftwarerunning
on each processor is responsible for coordinating mutually exclusive access to shared
resources with the system's other processors.

Figure 1–3 shows a sample multiprocessor system in SOPC Builder. The component
listed at the bottom, shared_memory, is considered shared because the data and
instruction master ports of both processors are connected to the same slave port of the
memory. Because cpu1 and cpu2 are both physically capable of writing blocks of data
to the shared memory at the same time, the software for those processors must be
written carefully to protect the integrity of the data stored in the shared memory.

Figure 1–2. Multiprocessor System with Shared Resource

FPGA Design

Processor 1

Memory 1

Processor 2

Timer 2

UART 2

Memory 2

Shared
Memory

Timer 1

UART 1
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–6
Sharing Resources in a Multiprocessor System
Sharing Memory
The most common type of shared resource in multiprocessor systems is memory.
Shared memory can be used for anything from a simple flag whose purpose is to
communicate status between processors, to complex data structures that are
collectively computed by many processors simultaneously.

If a memory component is to contain the program memory for more than one
processor, each processor sharing the memory is required to use a separate area for
code execution. The processors cannot share the same area of memory for program
space. Each processor must have its own unique .text, .rodata, .rwdata, .heap,
and .stack sections. See “Software Design Considerations” on page 1–10 for
information on how to make sure each processor sharing a memory component for
program space uses a dedicated area within that memory.

If a memory component is to be shared for data purposes, its slave port must be
connected to the data masters of the processors that are sharing the memory. Sharing
data memory between multiple processors can be trickier than sharing instruction
memory because data memory can be written to as well as read. If one processor is
writing to a particular area of shared data memory at the same time another processor
is reading or writing to that area, data corruption will likely occur, causing application
errors at the very least, and possibly a system crash.

The processors sharing memory need a mechanism to inform one another when they
are using a shared resource, so the other processors do not interfere.

Figure 1–3. Multiprocessor System Sharing On-Chip Memory
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–7
Sharing Resources in a Multiprocessor System
The Hardware Mutex and Mailbox Cores
The Nios II processor provides protection of shared resources with its hardware
mutex and mailbox core features. The hardware mutex and mailbox cores are not
internal features of the Nios II processor; they are small SOPC Builder components.

The term mutex stands for mutual exclusion, and a mutex does exactly as its name
suggests. A mutex allows cooperating processors to agree that one of them should be
allowed mutually exclusive access to a hardware resource in the system. This is useful
for the purpose of protecting resources from data corruption that can occur if more
than one processor attempts to use the resource at the same time.

The mutex core acts as a shared resource, providing an atomic test-and-set operation
that allows a processor to test if the mutex is available and if so, to acquire the mutex
lock in a single operation. When the processor is finished using the shared resource
associated with the mutex, the processor releases the mutex lock. Now another
processor may acquire the mutex lock and use the shared resource. Without the
mutex, this kind of function would normally require the processor to execute two
separateinstructions, testandset,betweenwhichanotherprocessorcouldalsotest for
availability and succeed. This situation would leave two processors both thinking
they successfully acquired mutually exclusive access to the shared resource when
clearly they did not.

It is important to note that the mutex core does not physically protect resources in the
system from being accessed at the same time by multiple processors. The software
running on the processors is responsible for abiding by the rules. The software must
be designed to always acquire the mutex before accessing its associated shared
resource.

f For more information about the hardware mutex core, refer to the Mutex Core chapter
in Volume 5: Embedded Peripherals of the Quartus II Handbook.

The mailbox core provides safe access to the shared memory location of the mailbox
messages, but only if all accesses to this shared memory are performed using the
hardware mailbox core’s software API. Physically, as seen in the SOPC Builder
connections panel, multiple processors are connected to the shared memory through
their data master ports, and in theory any one of them could simply write to the
shared memory, violating mutual exclusion and overwriting data. However, if the
mailbox core uses a dedicated shared memory, as in the design example for this
tutorial, and all accesses to that shared memory are handled through the API,
mutually exclusive access is ensured. Each hardware mailbox core you implement in
your SOPC Builder system is associated with a specific shared memory.

The mailbox hardware core implementation includes the functionality of two mutex
cores, one to guarantee mutually exclusive access for reading from the mailbox and
one to guarantee mutually exclusive access for writing to the mailbox. Manipulation
of mutex acquisition and relinquishing is handled through the API. The mailbox
operations visible to the software are altera_avalon_mailbox_pend(),
altera_avalon_mailbox_post(), and a non-blocking get operation.

f For more information about the hardware mailbox core, refer to the Mailbox Core
chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii53001.pdf

Chapter 1: Creating Multiprocessor Nios II Systems 1–8
Sharing Resources in a Multiprocessor System
Another kind of mutex, called a software mutex, is common in many operating
systems for providing the same protection of resources. The difference is that a
software mutex is purely a software construct that is used to protect hardware
resourcesfrombeingcorruptedbymultipleprocessesrunningonthesameprocessor.
A hardware mutex core is an SOPC Builder component with an Avalon interface that
uses logic to guarantee only one processor is granted the lock of the mutex at any
given time. Similarly, a hardware mailbox core in an SOPC Builder system guarantees
only one processor acquires the mailbox-associated mutex for writing at any given
time, and that only one processor acquires the mailbox-associated mutex for reading
at any given time. If every processor waits until it acquires the appropriate mutex
before using the associated shared resource, the resource is protected from potential
corruption caused by simultaneous access by multiple processors. In the case of the
hardware mailbox core, the API call tells the mailbox to acquire the mutex on behalf of
the processor. In the case of the hardware mutex core, each Nios II processor must
acquire and relinquish the mutex from the mutex core directly. The hardware mutex
core itself has no connection to the shared resource; it merely provides a semaphore.
Software must be written so that no processor attempts to access the shared resource
without first acquiring the mutex.

In some limited cases a mutex core or mailbox core might not be necessary. Such cases
might include one-way or circular message buffer arrangements in which only one
processor ever writes to a particular set of memory locations. However, sharing
resources safely without a mutex core or mailbox core can be complicated. When in
doubt, use the mutex core or the mailbox core.

Sharing Peripherals Between Multiple Processors
In general, with the exception of the mutex core and the mailbox core, the Nios II EDS
does not support sharing non-memory peripherals between multiple processors.

Sharingperipheralsinmultiprocessorsystemspresentssomedifficultchallenges,and
is generally considered to lead to inefficient system designs. The biggest problems
arise for peripherals with interrupts. If a peripheral is allowed to interrupt all the
processors that share it, there is no reliable way to guarantee which processor will
respond first and service that interrupt. Additionally, if the peripheral is used as an
input device for multiple processors, it becomes difficult to determine which
processor is supposed to collect given input from the device. While it is conceivable
that a complex system of handshaking could be created to handle these scenarios,
such a system is beyond the scope of this document, and is unsupported by the
Nios II hardware abstraction layer (HAL) library.

f For more information about the Nios II HAL Library, refer to the Nios II Software
Developer's Handbook.

Memoryperipheralsandmultiprocessorcoordinationperipheralscanbeaccessedby
multiple processors. Altera recommends that you restrict all other peripherals to be
accessible by only one processor in the system. If other processors require use of the
peripheral, they should use a hardware mailbox, or a message buffer that is
mutex-protected or otherwise multiprocessor-safe, to communicate with the single
processor that is connected to that peripheral.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Chapter 1: Creating Multiprocessor Nios II Systems 1–9
Sharing Resources in a Multiprocessor System
When building any system, especially a multiprocessor system, it is advisable to only
make connections between peripherals that require communication. For instance, if a
processor runs from and uses only one on-chip memory, there is no need to connect
that processor to any other memory in the system. Physically disconnecting the
processor from memories it is not using both saves FPGA resources and guarantees
the processor will never corrupt those memories.

In single processor systems, SOPC Builder will usually make intelligent default
choices for connecting components. However, in multiprocessor systems the need to
connect different components is very design dependent. Therefore, when designing
multiprocessor systems, you should explicitly verify that each component is
connected to the desired processor. Most components should be managed by a single
processor. If CPU A requires the services of a peripheral that is connected to and
managed by CPU B, CPU A must request of CPU B that it perform operations with the
peripheral on behalf of CPU A. You can use mailbox core communication between the
two processors for this purpose.

Multiprocessors and Overlapping Address Space
Single-processor systems typically prohibit more than one slave peripheral from
occupying the same address space because this arrangement causes conflicts. In
multiprocessorsystemshowever,separateslaveperipheralscanoccupythesamebase
address and not conflict, as long as each of those peripherals is exclusively mastered
byadifferentprocessor.Becausenoteveryslaveperipheral isnecessarilymasteredby
everyprocessor,eachprocessormighthaveadifferentviewof thesystem. Ifprocessor
A is connected to a slave peripheral mapped to address 0x4000, processor B may
connect to a separate slave peripheral, also mapped to address 0x4000, as long as
processor A is not connected to processor B's slave peripheral and processor B is not
connected to processor A's slave peripheral. In effect, the point-to-point connectivity
allows the two processors to have separate address spaces. Figure 1–4 shows a block
diagram of a sample multiprocessor system with different slave components mapped
to the same base address.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–10
Software Design Considerations
Software Design Considerations
Creating and running software on multiprocessor systems is much the same as for
single-processor systems, but requires the consideration of a few additional points.
Many of the software design issues described in this section are dictated by the
system's hardware architecture.

Program Memory
When creating multiprocessor systems, you might want to run the software for more
than one processor out of the same physical memory device. Software for each
processor must be located in its own unique region of memory, but those regions are
allowed to reside in the same physical memory device. For instance, imagine a two-
processor system where both processors run out of SDRAM. The software for the first
processor requires 128 KBytes of program memory, and the software for the second
processor requires 64 KBytes. The first processor could use the region between 0x0
and 0x1FFFF in SDRAM as its program space, and the second processor could use
the region between 0x20000 and 0x2FFFF.

Figure 1–4. Multiprocessor Slave Peripherals Mapped to the Same Base Address

FPGA Design

Processor 1
0x00002820

0x00002800

0x00001000

0x00001000

0x00002820

0x00002800

0x00000000

Memory 1

Processor 2

Timer 2

UART 2

Memory 2

Shared
Memory

Timer 1

UART 1

0x00000000
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–11
Software Design Considerations
The Nios II SBT and SOPC Builder provide a simple scheme of memory partitioning
that allows multiple processors to run their software out of different regions of the
same physical memory. The partitioning scheme uses the exception address for each
processor, which is set in SOPC Builder, to determine the region of memory from
which each processor will be allowed to run its software. The Nios II SBT is ultimately
responsible for the linking of the processors' software and determining where the
software will reside in memory; it uses the exception addresses that were set for each
processor in SOPC Builder to calculate where the different code sections will be
linked. The Nios II SBT provides each processor its own section within memory from
which it can run its software. If the software for two different processors is linked to
the same physical memory, then the exception address of each processor is used to
determine the base address of the region which that processor's software can occupy.
The end address of the region is determined by the next exception address found in
that physical memory, or the end of that physical memory, whichever comes first.

Each processor in a single or multiprocessor system has five primary code sections
that need to be linked to fixed addresses in memory. These sections are:

■ .text — the actual executable code

■ .rodata — any read-only data used in the execution of the code

■ .rwdata — where read-write variables and pointers are stored

■ .heap — where dynamically allocated memory is located

■ .stack — where function-call parameters and other temporary data is stored

See Figure 1–5 for a memory map showing how these sections are typically linked in
memory for a single processor Nios system.

Figure 1–5. Single Processor Code Linked in Memory Map

1 Mbyte Memory

0x00FFFFF

0x00000000

.stack

.heap

.rwdata

.rodata

.text
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–12
Software Design Considerations
In a multiprocessor system, it might be advantageous to use a single memory to store
all the code sections for each processor. In this case, the exception address set for each
processor in SOPC Builder is used to define the boundaries between where one
processor's code sections end and where the next processor's code sections begin.

For instance, imagine a system where SDRAM occupies the address range
0x04000000–0x5FFFFFF and processors A and B are each allocated 16 MBytes of
SDRAM to run their software. If you use SOPC Builder to set their exception
addresses 16 MBytes apart in SDRAM, the Nios II SBT automatically partitions
SDRAM based on those exception addresses. See Figure 1–6 for a memory map
showing how the SDRAM is partitioned in this example system.

The lower six bits of the exception address are always set to 0x20. Offset 0x0 is where
the Nios II processor must run its reset code, so the exception address must be placed
elsewhere. The offset of 0x20 is used because it corresponds to one instruction cache
line. The 0x20 bytes of reset code initialize the instruction cache, and then branch
around the exception section to the system startup code.

Care must be taken when partitioning a physical memory to contain the code sections
of multiple processors. There are no safeguards in SOPC Builder or the Nios II SBT
that guarantee you have provided enough code space for each processor's stack and
heap in the partition. If inadequate code space is allotted in memory, the stack and
heap might overflow and corrupt the processor's code execution.

Boot Addresses
In multiprocessor systems, each processor must boot from its own piece of memory.
Multiple processors might not boot successfully from the same bit of executable code
at the same address in the same non-volatile memory. Boot memory can also be
partitioned, much like program memory can, but the notion of sections and linking is
not a concern as boot code typically just copies the real program code to where it has
been linked in RAM, and then branches to the program code. To boot multiple

Figure 1–6. Partitioning of SDRAM Memory Map for Two Processors

0x5FFFFFF

32 Mbytes of Memory

Processor 1

Processor 2

.text

.rodata

.rwdata

.heap

.stack

.text

.rodata

.rwdata

0x05000020Exception Address

0x05000000Code Entry Point

Processor 2:

Exception Address

0x04000000Code Entry Point

Processor 1:

0x04000020

.heap

.stack
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–13
Software Design Considerations
processors out of separate regions with the same non-volatile memory device, simply
set each processor's reset address to the location from where you wish to boot that
processor. Be sure you leave enough space between boot addresses to hold the
intended boot payload. See Figure 1–7 for a memory map of one physical flash device
from which three processors can boot.

The Nios II Flash Programmer is able to program bootable code for multiple
processors into a single flash device. The flash programmer looks at the reset address
of each processor and uses that reset address to calculate the offset within the flash
memory where the code is programmed.

f For details about the Nios II Flash Programmer, refer to the Nios II Flash Programmer
User Guide.

Figure 1–7. Flash Device Memory Map with Three Processors Booting

0x00000000

0x00FFFFF

1Mbyte Flash Memory

Boot Loader

Program Data
Processor 1

Processor 2

Processor 3

0x0000FFFF

0x0001FFFF
0x00020000

0x00010000

Program Data

Boot Loader

Program Data

Boot Loader
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf

Chapter 1: Creating Multiprocessor Nios II Systems 1–14
Software Design Considerations
c YoumustexercisecautionwhenconnectingmultipleNios IIprocessorstoasingleCFI
flash memory device. Because no support mechanism exists in the CFI flash driver to
allow a processor to confirm that another processor is not currently accessing the flash
memorydevice,areadoperationcanreturncorrupteddata.Specifically, ifaprocessor
attempts to read from a CFI flash memory device currently not in read mode, the read
operation does not access the data on the flash correctly. If another processor issues a
query to the flash memory device immediately prior to the first processor’s read
attempt, the flash memory device is in command mode while it processes the query,
and the read operation cannot read the data correctly.

An example of a multiprocessor system in which this caution is relevant, is a system
in which multiple processors boot from the same CFI flash memory. In such systems,
you must remove CFI flash memory initialization from the alt_main() function run
by every Nios II processor. Should you find it necessary for a single processor to
initialize CFI flash memory, you must ensure that it does so only after all the other
processors have completed their boot processes. Otherwise, if the processors boot
simultaneously, a race condition occurs when the first processor to jump out of the
boot copier and start running the application code runs alt_main() and initializes
the flash memory driver while another processor is still trying to read its own boot
code. During this initialization, the second processor’s read operations of its own boot
copier return corrupted data.

1 Altera recommends that you designate one Nios II processor as the flash master, and
allow only the flash master to read from or write to the flash memory device, in any
system that connects multiple Nios II processors to a single flash memory device. The
designated processor can read the application images from the flash memory device
for the other processors.

If you choose to allow multiple Nios II processors to boot from the same CFI flash
memory device, to ensure safe access to the CFI flash memory, you must remove the
CFI flash memory driver initialization from the alt_main() function for all but one
processor, and that processor must confirm boot completion by all the other
processors before proceeding with the CFI flash memory driver initialization.

f For information about complex boot procedures, refer to AN458: Alternative Nios II
Boot Methods.

Running and Debugging Multiprocessor Systems from the Nios II SBT for Eclipse
The Nios II SBT for Eclipse includes a number of features that can help in the
development of software for multiprocessor systems. Most notable is the ability of the
Nios II SBT for Eclipse to perform simultaneous debug for multiple processors.
Multiple debug sessions can run at the same time on a multiprocessor system and can
pause and resume each processor independently. Breakpoints can also be set
individually per processor. If one processor hits a breakpoint, it does not halt or affect
the operation of the other processors. Debug sessions can be launched and stopped
independently.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/an/an458.pdf

Chapter 1: Creating Multiprocessor Nios II Systems 1–15
Design Example
Design Example
The following exercise shows you how to build a two-processor Nios II system with
SOPC Builder, starting with the neek_vic_single_91sp1_v1 example design as a
template. You create two application projects and two BSP software projects and
import them to the Nios II SBT for Eclipse, one BSP project for each processor. The
software for cpu1 runs a TCP/IP stack and accepts commands for adjusting the
frequency of a blinking LED through a telnet connection. cpu1 uses the hardware
mailbox component to pass LED frequency change messages to cpu2. The software
for cpu2 uses the hardware mailbox core to read these messages and adjust the LED
frequency accordingly. cpu2 continually checks the mailbox for new messages, and if
it finds one, adjusts the LED frequency.

Hardware and Software Requirements
To use this design example you must have the following:

■ Quartus® II Software version 9.1 SP1 or higher

■ Nios II Embedded Evaluation Kit (NEEK) with the following connections:

■ Connected through a USB-Blaster connection to the host computer

■ Connected through an Ethernet cable to the network

If you do not have a NEEK, you can follow the hardware development steps, but you
will not be able to download the complete system to a working board.

Installation Notes
For installation notes specific to Altera software versions, refer to the readme.txt file
included in your Multiprocessor_Tutorial.zip installation.

Creating the Hardware System
In the following steps you create a multiprocessor system by starting with the
neek_vic_single_91sp1_v1 hardware example design available with this tutorial in
Multiprocessor_Tutorial.zip, and adding an additional processor, an additional
timer, an additional vectored interrupt controller, a hardware mailbox component, a
shared on-chip memory, and a hardware mutex component. Your final system should
be identical to that in the neek_vic_multi_91sp1_v1 hardware design available with
this tutorial in Multiprocessor_Tutorial.zip, for comparison purposes. If you do not
have a NEEK, you can still follow these steps to learn how to design multiprocessor
hardware.

Getting Started with the neek_vic_single_91sp1_v1 Example Design
To begin building a multiprocessor system sharing resources, perform the following
steps:

1. Unzip the Multiprocessor_Tutorial.zip file.

2. Copy the neek_vic_single_91sp1_v1 folder to a working directory of your choice.
Make sure the path name has no spaces.

3. Open the Quartus II software.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–16
Design Example
4. On the File menu, click Open Project (not Open).

5. Browse and load the Quartus II Project File (.qpf) from the newly-created
directory.

6. On the Tools menu, click SOPC Builder.

7. Click cpu1_vic.

8. Click the blue arrow Move Up button several times to move cpu1_vic directly
under cpu1.

1 In this tutorial, you must name the hardware components exactly according to the
instructions. If your component names differ from the names printed here, the
software example will not work.

Adding a Second Processor
In the next series of steps, you add a second Nios II processor to the system. You use a
Nios II/f processor because it is the fastest choice. If your FPGA is resource
constrained by your other application needs, you can use the smaller Nios II/s
processor.

To add a second processor, perform the following steps:

1. In the Component Library on the left side of the System Contents tab, expand
Processors, and select Nios II Processor.

2. Click Add. The Nios II Processor MegaWizard™ interface appears, displaying the
Core Nios II page.

3. Specify the settings shown in Table 1–1.

1 Recall from “Program Memory” on page 1–10 that the exception addresses
determine how code memory is partitioned between processors. In this
tutorial, each of the two processors runs its software from 16 Mbyte of
SDRAM, so you set each processor's exception address within SDRAM,
separated by 0x1000000 (16 MBytes).

Table 1–1. cpu2 Parameter Settings

Parameter Value

Nios II Core Nios II/f

Hardware Multiply None

Hardware Divide Off

Reset Vector: Memory ddr_sdram

Reset Vector: Offset 0x1000000

Exception Vector: Memory ddr_sdram

Exception Vector: Offset 0x1000020

Include MMU Off

Include MPU Off
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–17
Design Example
Figure 1–8 shows the Core Nios II page after you specify these settings.

4. Click JTAG Debug Module. The JTAG Debug Module page appears.

5. Select Level 1 as the debugging level for this processor.

6. Click Advanced Features. The Advanced Features page appears.

7. For Interrupt Controller, select External.

8. For Number of shadow register sets, select 7.

9. Turn on Assign cpuid control register value manually.

10. For cpuid control register value, type 0x2.

11. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the Nios II core named cpu_0 now appears at the bottom of the System
Contents description.

12. Right-click the newly-added processor cpu_0 and click Rename.

13. Type cpu2 and press Enter.

14. In the Clock column, double-click and select ddr_sdram_auxhalf.

Figure 1–8. Nios II Processor Settings for cpu2
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

1–18 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example
15. In the Base column, double-click and type 0x06020000.

16. Click the blue arrow Move Up button several times to move cpu2 directly under
cpu1_timer.

1 Error messages still appear in the SOPC Builder messages window. This is because
SOPC Builder does not know that you plan to connect this processor with other
components in the system. Ignore the error messages for now. You will fix these errors
in later steps.

Adding a Vectored Interrupt Controller for cpu2
ProcessorsinanSOPCBuildersystemshouldnotshareavectoredinterruptcontroller
(VIC). Not every processor requires aVIC; however, multiple processors cannot share
a VIC. A VIC sends peripheral interrupts to the processor to which it is connected. To
protect data integrity, each peripheral interrupt must be handled by a single
processor.

c SOPC Builder allows you to connect a peripheral to more than one VIC. You must
check your system manually to ensure that each peripheral interrupt is routed to no
more than one VIC.

To add a VIC for cpu2, perform the following steps:

1. In the Component Library, expand Processor Additions and then click Vectored
Interrupt Controller.

2. Click Add. The VIC MegaWizard interface appears.

3. Specify the following settings:

■ Number of Interrupts: 8

■ Requested Interrupt Level Width: 4

■ DAISY CHAIN ENABLE: Off

4. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the VIC named vic_0 now appears at the bottom of the System
Contents description.

5. Right-click vic_0 and click Rename.

6. Type cpu2_vic and press Enter.

7. In the Clock column, double-click and select ddr_sdram_auxhalf.

8. In the Base column, double-click and type 0x06021000.

9. Click the blue arrow Move Up button several times to move cpu2_vic directly
under cpu2.

10. Using the connection matrix, make the following port connections:

■ cpu2_vic/dummy_master to cpu2_vic/csr_access

■ cpu2/data_master to cpu2_vic/csr_access

■ cpu2_vic/interrupt_controller_out to cpu2/interrupt_controller_in
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–19
Design Example
1 If you do not see the connection matrix, on the View menu, click Show Connections
Column.

Adding a Timer for cpu2
As mentioned earlier, it is typically not recommended for multipleprocessors to share
non-memory or non-multiprocessor coordination peripherals, so in this section you
add a separate timer peripheral for the second processor in this system.

To add a timer for cpu2, perform the following steps:

1. In the Component Library, expand Peripherals, expand Microcontroller
Peripherals, and then click Interval Timer.

2. Click Add. The Interval Timer MegaWizard interface appears.

3. Specify the following settings:

■ Timeout period: 1 ms

■ Timer counter size: 32

■ Under Hardware Options, in the Presets list, select Full-featured.

4. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the interval timer named timer_0 now appears at the bottom of the
System Contents description.

5. Right-click timer_0 and click Rename.

6. Type cpu2_timer and press Enter. This is the timer for cpu2.

7. In the Clock column, double-click and select ddr_sdram_auxhalf.

8. In the Base column, double-click and type 0x06022000.

9. Click the blue arrow Move Up button to move cpu2_timer directly under
cpu2_vic.

10. In the connection matrix, connect cpu2_timer/s1 to cpu2/data_master only, and
disconnect cpu2_ timer from all other masters.

11. In the IRQ connection matrix (on the rightmost side of the System Contents tab),
type 0 at the cpu2_vic to cpu2_timer connection. This value allows cpu2_timer to
interrupt cpu2 with a priority setting of 0, which is the highest priority. Do not
specify any interrupt priority for the cpu1_vic, because the cpu2_timer should
only interrupt the cpu2 processor.

1 If your system contents are displayed using the default filter, the labels you
see when you move the mouse over the potential interrupt connections in
the IRQ column do not make sense. Despite the port names listed, the ports
that are connected in the IRQ column are the irq_input and irq ports of the
components. To see the correct labels, in the System Contents tab, click the
Filters button and for Filter, select All. To return to the more compressed
presentation, in the System Contents tab, click the Filters button and for
Filter, select Default. Whether or not you display the correct labels, the
correct ports are connected in the IRQ column.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

1–20 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example
Adding a Message Buffer Memory
In this section, you add an on-chip memory to the system. The hardware mailbox
component uses this memory as a message buffer to pass messages between
processors. This memory must be shared by both processors in the system. The
processors use the mailbox core to provide mutually exclusive memory access,
protecting the memory's contents from corruption.

To add a message buffer memory, perform the following steps:

1. In the Component Library, expand Memories and Memory Controllers, expand
On-Chip, and then click On-Chip Memory (RAM or ROM).

2. Click Add. The On-Chip Memory (RAM or ROM) MegaWizard interface appears.

3. Under Memory type, select RAM (Writable).

4. For Data width, select 32.

5. In the Total memory size box, type 4096 and select Bytes to specify a memory size
of 4 KBytes.

6. Under Read latency, for Slave s1, select 1.

7. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the on-chip memory named onchip_memory2_0 now appears at the
bottom of the System Contents description.

8. Right-click onchip_memory2_0 and click Rename.

9. Type message_buffer_ram and press Enter. This memory is used as a message
buffer for the two processors in your multiprocessor system to communicate
through the hardware mailbox component.

10. In the Clock column, double-click and select ddr_sdram_auxhalf.

11. In the Base column, double-click and type 0x07000000.

12. Click the blue arrow Move Up button to move message_buffer_ram directly
under led_pio.

Connecting Shared Memory and System Output Resources
Now you need to properly connect all the resources that are shared between
processors inthesystemusingSOPCBuilder'sconnectionmatrixandIRQconnection
matrix.

Toproperlyconnect thememoryandsystemoutputresources inthesystemsharedby
the multiple processors, perform the following steps:

1. In the connection matrix, ensure that each timer is connected only to the data
master for its processor, by disconnecting cpu1_timer from cpu2/data_master.

2. In the connection matrix, ensure that the System ID peripheral named sysid is
connected to the data masters for both processors.

3. In the connection matrix, connect message_buffer_ram to the data masters for
both processors.

4. In the connection matrix, ensure that the ddr_half_rate_bridge is connected to the
instructionanddatamastersforeachprocessor,allowingbothprocessorstoaccess
ddr_sdram.
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–21
Design Example
5. In the connection matrix, disconnect cpu2/instruction_master from all
components except cpu2/jtag_debug_module, ddr_half_rate_bridge, and
flash_tristate_bridge.

6. In the connection matrix, disconnect cpu2/data_master from all components
except cpu2/jtag_debug_module, sysid, cpu2_vic/csr_access, cpu2_timer,
led_pio, message_buffer_ram, ddr_half_rate_bridge, and flash_tristate_bridge.

7. In the IRQ connection matrix, ensure that cpu2_vic is connected only to the
cpu2_timer. To remove an IRQ connection, erase the default IRQ number. In this
step, you disconnect all IRQ lines involving the cpu2_vic from all resources, except
for the cpu2_vic to cpu2_timer IRQ connection you set in step 11 in “Adding a
Timer for cpu2” on page 1–19.

1 Recall that to view the correct port names for the IRQ connections, you
must use the All filter in the System Contents tab.

8. In the IRQ connection matrix, ensure that cpu1_vic is not connected to the
cpu2_timer.

9. In the IRQ connection matrix, connect cpu1_vic to all peripherals except the
cpu2_timer by setting unique interrupt numbers for each potential cpu1_vic IRQ
connection.

10. To design the system so that cpu2 controls the blinking of the LED on the NEEK,
perform the following steps:

a. In the connection matrix, disconnect cpu1/data_master from the led_pio
component.

b. In the connection matrix, connect cpu2/data_master to the led_pio component.

Adding a Hardware Mailbox Component
Because your multiprocessor system shares data in memory, it must include an SOPC
Builderhardwarecomponentformultiprocessorcoordinationtoprotect thatmemory
from data corruption.

To add a hardware mailbox, perform the following steps:

1. In the Component Library, expand Peripherals, expand Multiprocessor
Coordination, and then click Mailbox.

2. Click Add. The Mailbox MegaWizard interface appears.

3. Leave the Memory module blank.

4. For Shared mailbox memory offset, type 0x800.

5. For Mailbox size (bytes), type 0x100.

6. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the mailbox named mailbox_0 now appears at the bottom of the
System Contents description.

7. Right-click mailbox_0 and click Rename.

8. Type message_buffer_mailbox and press Enter.

9. In the Clock column, double-click and select ddr_sdram_auxhalf.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

1–22 Chapter 1: Creating Multiprocessor Nios II Systems
Design Example
10. In the Base column, double-click and type 0x07009000.

11. Click the blue arrow Move Up button to move message_buffer_mailbox directly
under message_buffer_ram.

Optionally Adding a Hardware Mutex Component
The software examples for this tutorial do not use a separate hardware mutex
component. Instead, they coordinate multiprocessor communication through the
hardware mailbox component. However, this section provides you with the
instructions to add a mutex to your system, to demonstrate its availability and to
illustrate how to connect a hardware mutex component in a multiprocessor SOPC
Builder system.

To add the hardware mutex peripheral, perform the following steps:

1. In the Component Library, expand Peripherals, expand Multiprocessor
Coordination, and then click Mutex.

2. Click Add. The Mutex MegaWizard interface appears.

3. Click Finish to accept the default settings for this component. You return to the
SOPC Builder System Contents tab, and an instance of the mutex named mutex_0
now appears at the bottom of the System Contents description.

4. Right-click mutex_0 and click Rename.

5. Type message_buffer_mutex and press Enter.

6. In the Clock column, double-click and select ddr_sdram_auxhalf.

7. In the Base column, double-click and type 0x07008000.

8. Click the blue arrow Move Up button to move message_buffer_mutex directly
under led_pio.

Connecting Shared Multiprocessor Coordination Resources
Now you need to properly connect all the coordination resources that are shared
between processors in the system using SOPC Builder's connection matrix and IRQ
connection matrix.

To properly connect the shared coordination resources in the multiprocessor system,
perform the following steps:

1. In the connection matrix, connect message_buffer_mutex to the data_master ports
of both processors.

2. Ensure that message_buffer_mutex is not connected to either processor’s
instruction_master port.

3. In the connections matrix, connect message_buffer_mailbox to the data_master
ports of both processors.

4. Ensure that message_buffer_mailbox is not connected to either processor’s
instruction_master port.

5. Double-clickthemessage_buffer_mailboxcomponent.TheMailboxMegaWizard
interface appears.

6. For memory module, select message_buffer_ram.
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–23
Design Example
7. Click Finish.

1 None of the I/O components should be connected to multiple processors. Unused
connections consume Avalon resources and FPGA logic elements, possibly affecting
system fMAX.

Figure 1–9 shows a system in SOPC Builder after these changes. It shows the new
components that implement the message buffer and the required connectivity for the
system.

The neek_vic_multi_91sp1_v1 example design is also available in the
Multiprocessor_Tutorial.zip file. You can compare your completed system to the
predefined system located in the neek_vic_multi_91sp1_v1 subdirectory of the
extracted directory.

Generating and Compiling the System
In this section, you generate HDL for the system you just constructed in SOPC
Builder, and then compile the project in the Quartus II software to produce a
programming file.

Figure 1–9. Shared Resource Connections
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

1–24 Chapter 1: Creating Multiprocessor Nios II Systems
Creating Software for the Multiprocessor System
To generate and compile the system, perform the following steps:

1. Click the System Generation tab.

2. Turn off Simulation. Create project simulator files. System generation executes
much faster when simulation is off.

3. Click Generate. This might take a few moments. A Stop button replaces the
Generate button, indicating generation is taking place.

4. When generation is complete, the Generate button replaces the Stop button, and a
SUCCESS: SYSTEM GENERATION COMPLETED message displays. Click Exit
in SOPC Builder to return to the Quartus II software.

5. On the Quartus II Processing menu, click Start Compilation to compile the project
in the Quartus II software.

6. When compilation completes and displays the Full compilation was successful
message box, click OK.

7. Click Programmer on the Tools menu.

8. Turn on the Program/Configure checkbox for the SRAM Object File (.sof) in the
Quartus II Programmer.

9. Click Start to download the FPGA configuration data to your target hardware.

Creating Software for the Multiprocessor System
In the following steps you build one application and one BSP project for each
processor in the system using the Nios II SBT, and then import these application and
BSP projects to the Nios II SBT for Eclipse, creating a total of four separate software
projectsforthemultiprocessorsystem.Youthendebugthesoftwareprojectsusingthe
Nios II SBT for Eclipse.

The software you run on this system uses the hardware mailbox to exchange
messages between two Nios II processors.

Building the Application and BSP Projects
To build the application and BSP projects for this tutorial, perform the following steps:

1. Start a Nios II Command Shell.

2. Change directories to your working directory for the NEEK multiprocessor design
example.

3. Change directories to software_examples/app/cpu2_led.

4. Build the project to be run on the cpu2 processor by typing the following
command:

./create-this-app r
5. Change directories to software_examples/app/niosII_multicore_socket_server.

6. Build the project to run on the cpu1 processor by typing the following command:

./create-this-app r
Both application software projects and both BSP projects are created and built.
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–25
Creating Software for the Multiprocessor System
1 If you make hardware design changes in SOPC Builder, you can most easily
regenerate the application and BSP projects by performing the following steps:

1. Delete all folders and files except the two create-this-bsp scripts from
software_examples/bsp/ucosii_niosII_multicore and software_examples/bsp/
cpu2_ucosii_niosII_multicore.

2. Delete the two files software_examples/app/cpu2_led/Makefile and
software_examples/app/niosII_multicore_socket_server/Makefile.

3. Repeat the preceding set of steps to build the application and BSP projects.

Starting the Nios II SBT for Eclipse
In this section, you start the Nios II SBT for Eclipse and begin importing software
projects for the two Nios II processors in the system. To start the Nios II SBT for
Eclipse from SOPC Builder, perform the following steps:

1. On the Tools menu in the Quartus II software, click SOPC Builder.

2. In SOPC Builder, click the System Generation tab.

3. Click Nios II Software Build Tools for Eclipse. The Nios II SBT for Eclipse starts.

1 If the Workspace Launcher dialog box appears, click OK to accept the
default workspace. If the Nios II SBT for Eclipse welcome screen appears,
click Workbench to continue.

Importing the Software Projects
In this section, you import the following four projects to the Nios II SBT for Eclipse:

■ cpu2_led

■ niosII_multicore_socket_server

■ cpu2_ucosii_niosII_multicore

■ ucosii_niosII_multicore

To import the software projects, perform the following steps:

1. In the Nios II SBT for Eclipse, on the File menu, click Import.

2. Click the plus sign to the left of Nios II Software Build Tools Project. The Import
Nios II Software Build Tools Project option appears.

3. Highlight Import Nios II Software Build Tools Project, and click Next. The
Import Software Build Tools Project window opens.

4. For Project location, click the Browse button to navigate to one of the four projects
that you built by running the create-this-app script. For example, browse to
software_examples/app, highlight the cpu2_led folder, and click OK.

5. For Project name, enter your project name, for example cpu2_led, and click
Finish.

1 If a dialog box appears with the message Do you want the Nios II Software
Build Tools for Eclipse to manage your makefile for you?, click Yes.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

1–26 Chapter 1: Creating Multiprocessor Nios II Systems
Creating Software for the Multiprocessor System
6. Repeat steps 1 to 5 to import the remaining three projects.

Building the Software Projects
In this section, you build the software projects you just imported so they can be run on
the processors in the system.

To build the software projects, perform the following steps:

1. In the Nios II perspective, right-click the project cpu2_led and click Build Project.

2. Right-click the project niosII_multicore_socket_server and click Build Project.

Creating a Debug Configuration for Each Processor
In this section, you create a run/debug configuration for each of the target processors.
These configurations enable you to run and debug the two software projects you just
built on the processors in the system.

To create a debug configuration for each processor, perform the following steps:

1. In the Nios II perspective, click the cpu2_led project.

2. On the Run menu, click Debug Configurations

3. In the configurations list, right-click Nios II Hardware.

4. Click New. A new debug configuration is created for the project.

5. Click the Target Connection tab.

6. If the Name column is not populated, click Refresh Connections.

7. If the Name column remains unpopulated, perform the following steps:

a. In the Project tab, click Advanced. The Nios II ELF Section Properties dialog
box appears.

b. Under Other, set JTAG Debugging Information File name to
<working directory>/neek_vic_multi.jdi.

c. Click Close.

8. Under Processors, ensure that the row with Name value cpu2 is selected.

9. Click Apply.

10. Click Debug. The Nios II SBT for Eclipse downloads and launches the cpu2_led
software project on the cpu2 processor, then pauses cpu2 at a breakpoint set on
main().

11. If the Debug Configurations dialog box does not close automatically, click Close
to return to the Nios II perspective.

12. If you are prompted to enter the Nios II Debug perspective, click Yes.

13. If you are not already in the Nios II Debug perspective, change to the Nios II
Debug perspective by clicking the Debug perspective icon in the top right corner
of your Nios II SBT for Eclipse window.

14. Check that the cpu2 debug session, including the call stack, appears in the Nios II
Debug perspective.
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation
Preliminary

Chapter 1: Creating Multiprocessor Nios II Systems 1–27
Creating Software for the Multiprocessor System
15. To return to the Nios II perspective, click the Nios II perspective icon in the top
right corner of your Nios II SBT for Eclipse window. If the Nios II perspective icon
is not visible, click the yellow plus-sign Open Perspective button.

16. Repeat steps 1–13 to create and run a debug configuration for the cpu1 target
processor, substituting niosII_multicore_socket_server for cpu2_led and cpu1 for
cpu2.

You have created, downloaded, and started a debug configuration for each processor
in the system. You can now resume the code execution and debug code on each of the
processors individually, using the normal flow for running or debugging.

Each processor begins executing code immediately after its code is downloaded to the
FPGA; the processors do not start in unison. Although each processor begins running
the code as soon as it is downloaded, the debug configuration ensures that the
processor stops at a breakpoint set on main().

Debugging the Software Projects on the Board
After you download both debug configurations to the NEEK, you must resume code
execution on each processor.

To run the design example on the NEEK, after the two debug configurations are
downloaded, perform the following steps:

1. To continue the cpu2 debug run past the initial breakpoint, perform the following
steps:

a. To observe stepping in the debugger, click the main() call stack entry under
the cpu2 debug session.

b. Click the Step Over icon in the toolbar menu to see cpu2 step through the
software code.

c. To let cpu2 run freely, click the green arrow Resume icon in the toolbar menu.

2. To continue the cpu1 debug run past the initial breakpoint, perform the following
steps:

a. Click the main() call stack entry under the cpu1 debug session.

b. Click the green arrow Resume icon in the toolbar menu. The software running
on the cpu1 processor establishes an Ethernet link and displays an IP address
for cpu1 in the Nios II Console tab.

3. From the command line, telnet to cpu1 at port 30 using the IP address displayed in
the cpu1 startup messages. For example, if the IP address displayed is
137.57.235.39, type the following command:

telnet 137.57.235.39 30 r
4. The LED Frequency Changing menu appears.

5. Enter values 0 through 9, and watch the corresponding blink rate change for LED1
on the NEEK.

6. To quit the telnet session, type q.
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial
Preliminary

1–28 Chapter 1: Creating Multiprocessor Nios II Systems
Conclusion
Conclusion
In this tutorial, you constructed, built software projects for, and debugged software on
your first Nios II multiprocessor system. You have also learned how to use the
Mailbox component to share system resources between processors. Feel free to
experiment with the system you have created and find interesting new ways of using
multiple processors in an Altera FPGA.

Altera recommends saving this system to use as a starting point next time you wish to
create a multiprocessor system.
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation
Preliminary

© February 2010 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this tutorial.

Referenced Documents
This tutorial references the following documents:

■ AN458: Alternative Nios II Boot Methods

■ Mailbox Core chapter in Volume 5: Embedded Peripherals of the Quartus II
Handbook

■ MegaCore IP Library Release Notes and Errata

■ Mutex Core chapter in Volume 5: Embedded Peripherals of the Quartus II Handbook

■ Nios II Embedded Design Suite Release Notes and Errata

■ Nios II Flash Programmer User Guide

■ Nios II Hardware Development Tutorial

■ Nios II Software Developer's Handbook

How to Contact Altera
For the most up-to-date information about Altera products, refer to the following
table.

Date and Document Version Changes Made Summary of Changes

February 2010
v9.1 SP1

Updated for Nios II Software Build Tools
for Eclipse.

—

December 2007
v1.3

Updated for Quartus II 7.2 release: minor
text changes.

—

May 2007
v1.2

Updated for Quartus II 7.1 release. —

May 2006
v1.1

Updated for Quartus II 6.0 release. —

April 2005
v1.0

Initial release. —

Contact (1) Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com
Creating Multiprocessor Nios II Systems Tutorial

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51020.pdf
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html
http://www.altera.com/support/ip/processors/nios2/er/ips-niosii-er.html
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii53001.pdf
http://www.altera.com/literature/an/an458.pdf
http://www.altera.com/literature/rn/rn_ip.pdf

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
This document uses the typographic conventions shown in the following table.

.

Documentation Website www.altera.com/literature

Non-technical support
(General)

Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Contact (1) Contact
Method Address

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names, file
names, file name extensions, and software utility names are shown in bold type.
Examples: \qdesigns directory, d: drive, chiptrip.gdf file.

ItalicTypewithInitialCapitalLetters Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to
the user.
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation

http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–3
Typographic Conventions
r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic.

Visual Cue Meaning
© February 2010 Altera Corporation Creating Multiprocessor Nios II Systems Tutorial

Info–4 Additional Information
Typographic Conventions
Creating Multiprocessor Nios II Systems Tutorial © February 2010 Altera Corporation

	Creating Multiprocessor Nios II Systems Tutorial
	Contents
	1. Creating Multiprocessor Nios II Systems
	Introduction
	Benefits of Multiprocessor Systems
	Nios II Multiprocessor Systems
	Hardware Design Considerations
	Autonomous Multiprocessors
	Multiprocessors that Share Resources

	Sharing Resources in a Multiprocessor System
	Sharing Memory
	The Hardware Mutex and Mailbox Cores
	Sharing Peripherals Between Multiple Processors
	Multiprocessors and Overlapping Address Space

	Software Design Considerations
	Program Memory
	Boot Addresses
	Running and Debugging Multiprocessor Systems from the Nios II SBT for Eclipse

	Design Example
	Hardware and Software Requirements
	Installation Notes
	Creating the Hardware System
	Getting Started with the neek_vic_single_91sp1_v1 Example Design
	Adding a Second Processor
	Adding a Vectored Interrupt Controller for cpu2
	Adding a Timer for cpu2
	Adding a Message Buffer Memory
	Connecting Shared Memory and System Output Resources
	Adding a Hardware Mailbox Component
	Optionally Adding a Hardware Mutex Component
	Connecting Shared Multiprocessor Coordination Resources
	Generating and Compiling the System

	Creating Software for the Multiprocessor System
	Building the Application and BSP Projects
	Starting the Nios II SBT for Eclipse
	Importing the Software Projects
	Building the Software Projects
	Creating a Debug Configuration for Each Processor
	Debugging the Software Projects on the Board

	Conclusion

	Additional Information
	Revision History
	Referenced Documents
	How to Contact Altera
	Typographic Conventions

