EE 554 - Homework Chapter 2

2.6 Use the linearity of the z-transform and the transform of the exponential function to obtain the transforms of the discrete-time functions.
(a) $\sin (k \omega T)$
(b) $\cos (k \omega T)$
2.8 Find the inverse transforms of the following functions using Definition 2.1 and, if necessary, long division.
(a) $F(z)=1+3 z^{-1}+4 z^{-2}$
(b) $F(z)=5 z^{-1}+4 z^{-5}$
(c) $F(z)=\frac{z}{z^{2}+0.3 z+0.02}$
(c) $F(z)=\frac{z-0.1}{z^{2}+0.04 z+0.25}$
2.13 If the rational functions of Problems 2.8.(c) and (d) are transfer functions of LTI systems, find the difference equation governing each system.
2.17 Find the steady-state response of the systems resulting from the sinusoidal input $\mathrm{u}(\mathrm{k})=0.5 \sin (0.4 \mathrm{k})$
(a) $H(z)=\frac{z}{z-0.4}$
(b) $H(z)=\frac{z}{z^{2}+0.4 z+0.03}$
2.20 Obtain the convolution of two sequences $\{1,1,1\}$ and $\{1,2,3\}$.
(a) Directly
(b) Using z -transform
2.26 Repeat Problem 2.25 for the second-order closed-loop system of Problem 2.23(b) with plots for sampling frequencies $\omega_{\mathrm{s}}=\mathrm{k} \omega_{\mathrm{d}}$, where $\mathrm{k}=5,35,70$.

