ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL

Arty MicroBlaze Soft Processing System
Implementation Tutorial

Daniel Wimberly, Sean Coss

Abstract—A Microblaze soft processing system was set up and
then uploaded to a Arty Artix-7 FPGA Evaluation board using
the Xilinx Vivado software. Once this soft processor was created
using this software, C code was used to program the Microblaze
processor. The program that was created was set up such that
it would read from built in switches and buttons and use these
inputs to output to the built in LEDs and to output to a terminal
via serial communication. The following document outlines the
process that was taken to set up the soft processor, write it to
the Artix-7 board and then program it using the provided SDK
that comes with the Vivado software.

I. ARTY BOARD AND MICROBLAZE

The board used for the project was the Arty board which is
a development board built around the Artix-7 FPGA. This was
developed by Xilinx for use with the MicroBlaze soft processor
which is an HDL defined processor which can be written to the
Artix-7 FPGA. The board is shown in Figure 1. The evaluation
board provides connectivity such as switches, buttons, LEDs,
RGB LEDs, Pmod connectors, shield connectors, USB, and
Ethernet to work with HDL components and those defined
through the MicroBlaze.

Fig. 1. Arty Board

II. INSTALLING VIVADO

The first step in the implementation of this project was
to install the Vivado software by downloading from [1]. In
order to install this software an Xilinx account had to first be
created. Once the account was created, the download version
was selected. The version that was used for this project and

is suggested to install is the 2017.2 WebPack Windows self
extracting web installer shown in Figure 2.

& Vivado HLx 2017.2: WebPACK and Editions - Windows Self
Extracting Web Installer (EXE - 51.59 MB)
MD5 SUM Value: c0f1f42b33a39957d85b0d4548717f80

& Vivado HLx 2017.2: WebPACK and Editions - Linux Self
Extracting Web Installer (BIN - 85.24 MB)
MD5 SUM Value: eaee62b9dd33d97955dd77694ed1ba20

& vivado HLx 2017.2: All QS installer Single-File Download
(TAR/GZIP - 22.13 GB)
MD5 SUM Value: 958f190a089ad3f39d327d972c7dcf35

Fig. 2. Install Version

Once this was downloaded, the installer was run, following
all of the standard install instructions. Note that the user name
and password for the Xilinx account that was created were
needed for the install. When the step where the user chose
which packages to install was reached, the SDK and 7 Seriecs
device options were checked, as these were required for the
project. These are shown in Figure 3.

§. Vivado 2017.2 Installer - Select Extra Content — O X

XILINX

Select Extra Content
ALL PROGRAMMABLE.

Select additional content to install
Vivado HL WebPACK is the no cost, device limited version of Vivado HL Design Edition.

=% Design Tools A
[vivado Design Suite
i Software Development Kit (SDK)
- DocNav
=¥ Devices
= [M Production Devices
SoCs
E 7 Series (limited support)
UltraScale (limited support)
[UttraScale+ (limited support)
Engineering Sample Devices
=+ Installation Options
[Install Cable Drivers
Enable WebTalk for Vivado to send usage statistics to Xilinx (Always enabled for WebPA
Install WinPCap for Ethernet Hardware Co-simulation
|| Launch configuration manager to associate System Generator for DSP with MATLAB v
< >

Download Size: 0.0 Byte
Disk Space Required: 0.0 Byte

Reset to Defaults

Copyright @ 1386-2017 Xiinx, Tnc. All ights reserved. < Back Next > Gancal

Fig. 3. Install Packages

After this step the standard install options were chosen
and the install wizard was followed until the program was
successfully installed.

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 2
III. MICROBLAZE IMPLEMENTATION v IPINTEGRATOR |
Create Block Design .
¢ Create Block Design x
. Open Block Design
The process for project implementation is highlighted below. . O —)
e Open Vivado SDK
e Create new project Y SIMULATION Designname: | design_1 |
e Create block diagram Fun Simulation _ _
Directory: @ =Local to Project= hd
e Populate block diagram with necessary ports, blocks,
V¥ RTL ANALYSIS Specify source set Design Sources w
and IPs
X . » Open Elaborated Design -
e Wire block diagram as needed ©
e Ensure Settings and names for all blocks are as desired v SYNTHESIS .
e Run design validation . . .
e Generate bitstream Fig. 5. Create Block Design In New Project
e Export bitstream
e Open SDK A system clock block was added by clicking on the “Board”
e Create SDK project pane, and dragging the ’System Clock” block into the block
. . diagram Figure 6. The block is shown by Figure 7. The clock
e Write Microblaze code . i .
) block settings were set as shown in Figure 8 and Figure 9 to
» Compile code have 3 clock outputs with an active low reset.
e Write bitstream to board
e Write code to board and run program
Sources Design Signals Board b
The first step of the project implementation was to open
Vivado 2017.2 and to create a new project. A directory and Q T = @ W X
filename without spaces was used, and it was set up as an & Aty

RTL project with the ”Do not specify sources at this time”
box checked. After clicking “Next”, the Arty board should v
be selected by selecting the “Boards” icon, and selecting the
”Arty” board, as shown in Figure 4. Once the project was
created, a new block design was created, by clicking the
”Create Block Design” under the "IP INTEGRATOR” pane
Figure 30. The block diagram was opened, and the process of
populating the diagram was begun.

Clocks (1 out of 1 connected)
@ System Clock

Fig. 6. Add Clock Block

clk_wiz_0
Mew Project X = = \
reset clk_outt
Default Part
Choose a default Xilink part o board for your project, This can be changed Iater. [sys_clock [locked
Clocking Wizard
Select {8} Pats | [l Boards
~ Filter] Preview
Vendor Al v
Display Name: | All - Flg. 7. Clock Block
Board Rex: Latest v
Reset All Filters
Search: v
Display Name A BoardRev Part /0 Pin Count Board | Clocking Options | OutputClocks MMCM Settings | Summary
E Arty 57-50 digilentinc.com B.0 &) xc7s50csga324-1 324 2 The phase is calculated relative to the active input clock.
@ Arty 2710 digilentinc.com AD @ xc72010cig400-1 400 OutputClock PortName | CuPutFreq (MHz) Phase (degrees) Duty Cycle (%)
Requested Actual Requested Actual Requested | Actual
@ Ay z7-20 digilentinc.com A0 @ xc72020c19400-1 400
(@A P — N TeE AL | T3 | clk_outt clk_outt 100.000 100.000 0.000 0.000 50.000 50.0
< > V clk_out2 clk_out2 166.867 166.667 0.000 0.000 50.000 50.0
| clk_out3 clk_out3 200.000 200.000 0.000 0.000 50.000 50.0
Ho Board Connectors clk_outd clk_out 100,000 0.000 50.000
clk_outs 100.000 0.000 50.000
= clk_out6 100.000 0.000 50.000
® Cier |
clk_out? 100.000 0.000 50.000
Fig. 4. Select Arty Board Fig. 8. Clock Settings

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL
Reset Type

Active High (®) Active Low

Fig. 9. Clock Settings Ctd.

Next, the DDR3 SDRAM external memory interface was
added. This is shown in Figure 10. When added, the software
automatically added the memory interface generator block with
the memory interface, as shown in Figure 11.

~ [External Memory (1 out of 2 connected)
¥® DDR3 SDRAM

¥ Quad SPIFlash

Fig. 10. DDR3 Menu Item

mig_7series_0

4 s AXI

+ | m—{"> ddr3_sdram

0 sys_rst ui_clk_sync_rst
clk_ref i [)——= clk_ref i ui_clk
sys_clk_i [>——= sys_clk_i mmem_locked

0 aresetn init_calib_complete

I‘-;‘crnofy nterface Generator (MIG 7 Scrics)

Fig. 11. DDR3 Interface With MIG Block

The system reset was added, and the blocks were connected
as shown by Figure 12.

clk_wiz_0

clk_out1

locked
clk_out2
clk_out3

resetn
cli_in1

|

. Clocking Wizard .

sys_clock [

mig_7series_0

DDR3 + ||| ™) ddr3_sdram

ui_clk_sync_rst

4+ s Axi

sys_rst

reset [

clk_ref i ui_clk

sys_ch_i mmem_locked

aresetn

init_calib_complete

Memaory Interface Generator (MIG 7 Scrms)

Fig. 12. MIG Block With Clock Block

The Microblaze IP was added next. To add this item, the
”+” icon shown in Figure 14 was clicked and the Microblaze
IP was chosen. Next, the "Run Block Automation” designer
assistance, shown shaded in green at the top of the block
diagram, was used. The settings for local memory, cache

configuration, and clock connection were changed to reflect
Figure 13. After this step was complete, the block diagram
looked like Figure 15.

' Run Block Automation x

Automatically make conneetions in your design by checkingthe boxes ofthe blocks to connect Select a block on the eR 1o display its
configuration options on the right [

Description
~ |/ All Autornation (1 out of 1 selected)

WicroBlaze connection automation generates local memory of selected size, and caches
+ 17 microblaze_0

can be configured. MicroBlaze Debug Module, Peripheral AXI interconnect,Intermupt
Controller, a clock source, Proces sor System Reset are also added and connected as
needed.

Instance: /micrablaze_0
Options

Local Memory. KB v
Local Memory ECC: | None v
Cache Gonfiguration: | 16KB
Debug Module: Debug Only v
Peripheral AXI Pott | Enabled v

Interrupt Controller:

Clock Connection: Jmig_7series_0fui_clk (83 liHz) ~
(2)

Fig. 13. Microblaze Block Automation Settings

Search: microblaze| (3 matches)

4F MicroBlaze
4F MicroBlaze Debug Module (MDM)
4F MicroBlaze MCS

ENTER to select, ESC to cancel, Ctri+0 for IP details

Fig. 14. Add Microblaze IP

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL

MicroBlaze

Fig. 15. Microblaze Block Automation Result

Up to this point, the specific wire connections in the block
diagram would be largely changed, so little attention was paid
to ensuring the wiring was configured in this manner. The
GPIO ports shown in Figure 16 and the UART port were added
next. The Arty board automatically configures the LED GPIO
ports to share one AXI GPIO block, while the buttons and
switches share another. After addition of these pins, the result
is shown by Figure 17. The blocks were then renamed to have
more intuitive names, as shown by Figure 18. The UART port
also added a GPIO block, but this block was not renamed.

~ l= GPIO (1 out of 6 connected
-
¥ 4 Push Buttons
¥ 4 RGB LEDS
¥ 4 Bwitches

Fig. 16. Adding GPIO Ports

axi_gpio_0
4 s_Axi
E i GPIO +||| [led_4bits
s_axi_ack = Al D s
s_axi_aresetn " gb_|
AXI GPIO
axi_gpio_1
4 s Axi
t g GPIO +||| {7 push_butions_4bits
- It . . .
aLod et GPIo2 +||| [dip_switches_abits
AXI GPIO
Fig. 17. Added LED and Button Ports
axi_gpio_leds
I s
E GPIO +||| {> led_dbits
s_axi_ack e A — Qg
s_axi_aresein i rgb_le
AXI GPIO
axi_gpio_buttons
4 sax
t g GPIO +||| {7> push_buttons_4bits
== I N B -
oL ammsein GPIO2 ||| {> dip_switches_dbits
AXI GPIO

Fig. 18. Renamed GPIO Blocks

At this point, connection automation was run on the GPIO
ports to add all of the remaining necessary blocks to the
diagram, but the connections made were not (necessarily) used.
Blocks were renamed and connected as shown by Figure 19
(see Appendix for larger image). Note that some items were
deleted, and that some were duplicated and/or renamed to
achieve the result shown.

Fig. 19.

Final Block Diagram Layout

The next step was to validate the design by clicking the
checkbox icon shown in Figure 20. After completion, a mes-
sage was given confirming that no connection errors existed.

E b, W& =

—
¢ Validate Design *

o Validation successful. There are no errors or critical warnings in this design.

Fig. 20. Block Diagram Validation

After this, an HDL wrapper was created by navigating to
”Sources”, right-clicking on the block diagram design, and
clicking ”Create HDL Wrapper” Figure 21. Note that whenever
the block diagram is changed, the current HDL wrapper should
be deleted and a new one created.

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL

~ B[] desinn 4 i desinn 1 fdesian 1 hdl (1) I

> @ d Source Node Properties

~ = Configur: lm OpenFile

D boart Create HDL Wrapper...

» Constraints

View Instantiation Template
> Simulation 5S¢

Generate Output Products

Reset Qutput Products...

¥ Remove File from Project...

Disable File

Hierarchy Update »
C‘ Refresh Hierarchy
IP Hierarchy 3

SetUsedIn...

Edit Constraints Sets...

Edit Simulation Sets

Hierarchy IF So Associate ELF Files...

<+ Add Sources...

s File Propert
ource File Prope Report IP Status

design_1.bd Goto Source

Fig. 21. HDL Wrapper Creation

The design must then be synthesized and a bitstream gen-
erated. To do this, the ”Generate Bitstream” icon shown by
Figure 22 was clicked, and the “Yes” box selected. Default
settings in the following window were selected Figure 23.
For a short time, a status bar showed, then the synthesis and
implementation process followed. Its status could be seen by
looking at the status indicator at the top right of the Vivado
software, next to the exit button Figure 24.

= > (B e =
BLOCK DESIGN - design_1
Synthesis is Out-of-date X

Synthesis is out-of-date. OK to launch synthesis and implementation first? 'Generate
Bitstream’ will automatically start when synthesis and implementation completes.

D Don't show this dialog again

Yes | Mo | | Cancel |

Fig. 22. Generate Bitstream Icon

¢ Launch Runs *

Launch the selected synthesis or implementation runs

Launch directory. | & <Default Launch Directory= hd

Options

® Launchruns on local host Number ofjobs: 4«

Generate scripts only

Dan't show this dialog again

Cancel

Fig. 23. Generate Bitstream Icon

Running synth_design Cancel J

Default Layout ~
Fig. 24. Bitstream Generation Status

When the bitstream generation is complete, a message box
popped up asking whether the user would like to see the
implemented design, view reports, open hardware manager,
or generate memory configuration file. Since none of these
options were relevant, ”Cancel” was selected.

The next step was to export hardware. This was done by
selecting “File - Export - Export Hardware,” checking the
“Include Bitstream” box, and clicking "OK” Figure 25. If an
overwrite dialogue box came up, the choice to overwrite the
previous bitstream file was selected.

¢ Export Hardware X

Export hardware platform for software
development toals. ‘

+| Include bitstream

Export ta:

|/"7‘)]
Ly

= =Local to Project= A

Cancel

Fig. 25. Export Hardware Step

Lastly, the SDK was opened by selecting “File - Launch
SDK”. The SDK allows the user to write the bitstream to the
Arty and to write programs for the Microblaze soft processor.

IV. PROGRAMMING WITH SDK

When the SDK is launched it should open up a new window.
Once this new window is up a new project was created by

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL

going to “File - New Application Project”. A window will pop
up in which the project can be named. The rest of information
should be auto-populated as shown Figure 26. After the project
was named, “Next” was selected and then the ”Hello World”
Template was chosen Figure 27.

New Project o X

I~

Application Project

Create a managed make application project.

Project name: | Proj1

Use default location

tion: | C:L \Documents\Sci 3\EmbeddedCo Browse.

Choos tem: default

05 Platform: standalone v

Target Hardware
Hardware Platform: system_wrapper_hw_platform_0 v New..

Processor: microblaze_0 i

Target Software
Language: ®c Oc+r
32-bit
N/A

Board Support Package: ® Create New | Proj1_bsp

OUse existing Project1Take6_bsp

@

Fig. 26. Name SDK Project

New Project o X

[~

Templates

Create one of the available templates to generate a fully-functioning application project

Available Templates:

Dhrystone Let's say "Hello World' in C.
Empty Application

IwlP Echo Server
Memory Tests
Peripheral Tests
SREC Bootloader
SREC SPI Bootloader

Fig. 27. Select Hello World Template

Once this is built, the ”src” file under the project explorer
was opened and “helloworld.c” was opened since this was the
main file for the SDK C code to be written to the device. The
code originally contained in this file was then replaced with
the code shown in Figure 28. This code is set up to read from
the development board’s buttons and switches and then write
to the LEDs. To do this the Gpio peripherals are initialized
and then their directions were set. Then inside of a loop, the
values of the switches and buttons were read. The value of the
switches were written to the LED outputs. The values of the
buttons were displayed by writing to the serial port.

1 #include "xparameters.h"
2 #include "xbasic_types.h"
3 #include "xgpio.h"

4 #include "xstatus.h"
€

XGpio GpioOutput;
XGpio GpioInput;

9 eint main (void) {

11 Xuint32 status;

12 Xuint32 in1, in2, outl;
13 Xuint32 OldData;

14 Xuint32 i, j;

16 // Clear the screen
17 //xil_printf("%c[23",27);

// Initialize the GPIO driver so that it's ready to use,
status = XGpio_Initialize(&GpioOutput, XPAR_AXI_GPIO_LED DEVICE_ID);
if (status != XST_SUCCESS)

return XST_FAILURE;
// Set the direction for all signals to be outputs
XGpio_SetDataDirection(&GpioOutput, 1, 0x@);
//XGpio_SetDataDirection(&GpioOutput, 2, ©x00000000);

27 // Initialize the GPIO driver so that it's ready to use,

28 status = XGpio_Initialize(&GpioInput, XPAR_AXI_GPIO_SW_DEVICE_ID);
29 if (status != XST_SUCCESS)

30 return XST_FAILURE;

31 // Set the direction for all signals to be inputs
32 XGpio_SetDataDirection(&GpioInput, 1, OXFFFFFFFF);
33 XGpio_SetDataDirection(&GpioInput, 2, OXFFFFFFFF);

3 OldData = OXFFFFFFFF;
36 xil_printf("iSEFSedalized\n\r");
37 //XGpio_DiscreteWrite(&GpioOutput, 1, OxF);

39 while(1) {

40 inl = XGpio_DiscreteRead(&GpioInput, 1);// & 0xF0000000;
41 in2 = XGpio_DiscreteRead(&GpioInput, 2);// & 0xF0000000;
42 //xil_printf("BTN: %@x%X\r\n", in2);

43 //xil_printf("BTN: %X\r\n", in2);

44 xil_printf("BTN: %X\r\n", inl);

45 //XGpio_DiscreteWrite(&GpioOutput, 1, j);
46 for(i = @; i < 50; i++) {} //soft delay

47 XGpio_DiscreteWrite(&GpioOutput, 1, in2);
48 |}
49 return 0;
SN "
Fig. 28. C-Code To Implement With MicroBlaze

Once the code had been written, it was saved which will
automatically compile and error check the code. After the code
has compiled it can then be written to the FPGA. Before this
step was done, the Arty board was plugged into the computer.
In the quick selection tool bar the Program FPGA button was
clicked which opens the window for programming the FPGA
shown in Figure 29. The settings were ensured to match that
shown in Figure 29. After this "Program” was selected which
programmed the FPGA.

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL

B program FPGA X

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration
Hardware Platform: | system_wrapper_hw_platform_0 v

Connection: Local ¥ New

Device: [Auto Detect | sefect.

Btstream: | system wrapper bit | search.. Browse..
[Partial Bitstream

BMM/MMI File: | system_rapper.mmi | search... Browse..

Software Configuration

Processor ELF/MEM File to Initialize in Block RAM
microblaze_0 bootloop

< >

@

Fig. 29. Program The FPGA

Once the FPGA had been programmed the program needed
to be ran. This was done by selecting the drop down menu next
to the green run button and then selecting "Run as - Launch
on Hardware (System Debugger)”. This will run the program
on the FPGA which can be tested by flipping the switches on
the board and seeing that the corresponding LEDs light up.
The serial output can be tested by opening a serial terminal
such as Putty, and properly connecting to the COM port that
the board is connected through.

V. CONCLUSION

The implementation in this report configured the Arty FPGA
evaluation board to use several of the built-in LEDs and
switches to perform basic actions using a microcontroller-like
C programming environment. While the ability to program
a microcontroller using C or similar languages is useful in
its own right, the Arty board provides much more versatility
because it can be programmed to have custom logic gate-
based functionality that does not necessarily rely on the
built-in interrupt or loop-based structure of the Microblaze
microcontroller, meaning that some actions can be completed
much more quickly and/or reliably than if one were to rely on
the base microcontroller alone. In addition, both the FPGA
and microcontroller are effectively integrated into a single
chip, meaning the complexity of wiring both devices together
is completely eliminated. This advantage over conventional
solutions can save large amounts of time when designing and
testing early prototypes.

REFERENCES

[1] Vivado Installer
https://www.xilinx.com/support/download.html

https://www.xilinx.com/support/download.html

APPENDIX A

ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL
FINAL BLOCK DIAGRAM

QOId9 IXY

ujesale Xe S

pai b1 _|_ + zoldo g
_ HoeTXes
SUAY Pa| || + Old® Lk
IXv's +
L o 108UU02IB] XY
pa| oid6 ™ Ixe
0149 IXY NL3STHY ZON ey
— MOV 20N ———1
_ - UjesaleTXe TS N13STHY LW ——ri
suqy” sayopms™dip —|= + zoido N -
v iy e XeTS N1V LON =t
SHay suopng ysnd {Jrmm———{|| + Old® S 4 _
Xv's + + XV 20N gy NIISTHY 00N —
- — X _ 1959y Wa)SAS 10S$900.1d
- e - + XV ION mm 10V 00N = p ~
ms~oid6 " ixe _ Xa _ [_ _
R 4 IXV 00N NL3SIHV 00 jesoydued paxoo wop
ayMen IXY 310V 008 1t [0:0]uiesare 0su00IBI 1siTskS Bngep qui
o [ELEN [0:0hesei fessyduad ujeseiTXne o
wesale Xe TS e s X
= ydnusu — MOV ——11 [0:0hesai jonisTsng uTjesa Xe o1
_ Hoe e | _uwe
Jen gsn AU|_ |+ Lavn _ . jesai qu 0 oUAS TISEMOlS
q |+ IXvV's +

0 eyMen ixe) yduad Ixe"(_ eze|qosoiw WO0OL ™} saues, Blwisi

aze|gonIN

- ~
—iid O IXY W \; (Waw) ainpoy bngaq azejgosoipy
Co- yos0y —_——
— 4 007XV e
A0 1547SAS Bnaeq

Lit— 4 daixv W . 9Ze|g0.ol E
H e - I5OLIN 91830 + || || + 0"on@30EM
LdNYYILNI + e
+ awia 1 wpw piezipn Bunooln
L J EE—
Aiowaw™|edo| 0 9ze|qosoiu 0 8zejqonow umv_ow_ B
(CENEL) Jojesauas) soepBIU| AIOWS| 7 [anosip LU] oo shs
S L OIN) J0jeiauag eoepialul Aowaly o ano uesal (] vesal
j91dwos e ujesare - | 7 e
959y Wa)SAS J0SS800,
pexoo woww yoshs L] 1osay wajshs d

N =
X jarms i . L Zm
HIn P [103UL00IBI] XY {1 feseyduied PoYO0[Wop

JsiTouAs oI IsiTshs [0:0luiesase osuucosau jsi sAs Bngep qwi =
edaa {fF——||+ cuaa NLISTHY 108 —1H [0:0hiesajesoyduad ujeseIXNe
- = = N0V 10S =4 [0:0hes04 10ns "SNq uesal xe.
0 seuas/ Biw _ _ o
N13SIHY 00N — Jesai qui o™ ouks TIsemors
10V 00N J

INES 0 Seues, Biw is1

NL3STHY 00S et

+ IXv 00N

MOV 008 =—t

UO2JaJUI- WA Ixe

Enlarged Block Diagram

Fig. 30.

	Arty Board and MicroBlaze
	Installing Vivado
	Microblaze Implementation
	Programming with SDK
	Conclusion
	References
	Appendix A: Final Block Diagram

