
ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 1

Arty MicroBlaze Soft Processing System
Implementation Tutorial

Daniel Wimberly, Sean Coss

Abstract—A Microblaze soft processing system was set up and
then uploaded to a Arty Artix-7 FPGA Evaluation board using
the Xilinx Vivado software. Once this soft processor was created
using this software, C code was used to program the Microblaze
processor. The program that was created was set up such that
it would read from built in switches and buttons and use these
inputs to output to the built in LEDs and to output to a terminal
via serial communication. The following document outlines the
process that was taken to set up the soft processor, write it to
the Artix-7 board and then program it using the provided SDK
that comes with the Vivado software.

I. ARTY BOARD AND MICROBLAZE

The board used for the project was the Arty board which is
a development board built around the Artix-7 FPGA. This was
developed by Xilinx for use with the MicroBlaze soft processor
which is an HDL defined processor which can be written to the
Artix-7 FPGA. The board is shown in Figure 1. The evaluation
board provides connectivity such as switches, buttons, LEDs,
RGB LEDs, Pmod connectors, shield connectors, USB, and
Ethernet to work with HDL components and those defined
through the MicroBlaze.

Fig. 1. Arty Board

II. INSTALLING VIVADO

The first step in the implementation of this project was
to install the Vivado software by downloading from [1]. In
order to install this software an Xilinx account had to first be
created. Once the account was created, the download version
was selected. The version that was used for this project and

is suggested to install is the 2017.2 WebPack Windows self
extracting web installer shown in Figure 2.

Fig. 2. Install Version

Once this was downloaded, the installer was run, following
all of the standard install instructions. Note that the user name
and password for the Xilinx account that was created were
needed for the install. When the step where the user chose
which packages to install was reached, the SDK and 7 Seriecs
device options were checked, as these were required for the
project. These are shown in Figure 3.

Fig. 3. Install Packages

After this step the standard install options were chosen
and the install wizard was followed until the program was
successfully installed.



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 2

III. MICROBLAZE IMPLEMENTATION

The process for project implementation is highlighted below.

• Open Vivado SDK
• Create new project
• Create block diagram
• Populate block diagram with necessary ports, blocks,

and IPs
• Wire block diagram as needed
• Ensure Settings and names for all blocks are as desired
• Run design validation
• Generate bitstream
• Export bitstream
• Open SDK
• Create SDK project
• Write Microblaze code
• Compile code
• Write bitstream to board
• Write code to board and run program

The first step of the project implementation was to open
Vivado 2017.2 and to create a new project. A directory and
filename without spaces was used, and it was set up as an
RTL project with the ”Do not specify sources at this time”
box checked. After clicking ”Next”, the Arty board should
be selected by selecting the ”Boards” icon, and selecting the
”Arty” board, as shown in Figure 4. Once the project was
created, a new block design was created, by clicking the
”Create Block Design” under the ”IP INTEGRATOR” pane
Figure 30. The block diagram was opened, and the process of
populating the diagram was begun.

Fig. 4. Select Arty Board

Fig. 5. Create Block Design In New Project

A system clock block was added by clicking on the ”Board”
pane, and dragging the ”System Clock” block into the block
diagram Figure 6. The block is shown by Figure 7. The clock
block settings were set as shown in Figure 8 and Figure 9 to
have 3 clock outputs with an active low reset.

Fig. 6. Add Clock Block

Fig. 7. Clock Block

Fig. 8. Clock Settings



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 3

Fig. 9. Clock Settings Ctd.

Next, the DDR3 SDRAM external memory interface was
added. This is shown in Figure 10. When added, the software
automatically added the memory interface generator block with
the memory interface, as shown in Figure 11.

Fig. 10. DDR3 Menu Item

Fig. 11. DDR3 Interface With MIG Block

The system reset was added, and the blocks were connected
as shown by Figure 12.

Fig. 12. MIG Block With Clock Block

The Microblaze IP was added next. To add this item, the
”+” icon shown in Figure 14 was clicked and the Microblaze
IP was chosen. Next, the ”Run Block Automation” designer
assistance, shown shaded in green at the top of the block
diagram, was used. The settings for local memory, cache

configuration, and clock connection were changed to reflect
Figure 13. After this step was complete, the block diagram
looked like Figure 15.

Fig. 13. Microblaze Block Automation Settings

Fig. 14. Add Microblaze IP



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 4

Fig. 15. Microblaze Block Automation Result

Up to this point, the specific wire connections in the block
diagram would be largely changed, so little attention was paid
to ensuring the wiring was configured in this manner. The
GPIO ports shown in Figure 16 and the UART port were added
next. The Arty board automatically configures the LED GPIO
ports to share one AXI GPIO block, while the buttons and
switches share another. After addition of these pins, the result
is shown by Figure 17. The blocks were then renamed to have
more intuitive names, as shown by Figure 18. The UART port
also added a GPIO block, but this block was not renamed.

Fig. 16. Adding GPIO Ports

Fig. 17. Added LED and Button Ports

Fig. 18. Renamed GPIO Blocks

At this point, connection automation was run on the GPIO
ports to add all of the remaining necessary blocks to the
diagram, but the connections made were not (necessarily) used.
Blocks were renamed and connected as shown by Figure 19
(see Appendix for larger image). Note that some items were
deleted, and that some were duplicated and/or renamed to
achieve the result shown.

Fig. 19. Final Block Diagram Layout

The next step was to validate the design by clicking the
checkbox icon shown in Figure 20. After completion, a mes-
sage was given confirming that no connection errors existed.

Fig. 20. Block Diagram Validation

After this, an HDL wrapper was created by navigating to
”Sources”, right-clicking on the block diagram design, and
clicking ”Create HDL Wrapper” Figure 21. Note that whenever
the block diagram is changed, the current HDL wrapper should
be deleted and a new one created.



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 5

Fig. 21. HDL Wrapper Creation

The design must then be synthesized and a bitstream gen-
erated. To do this, the ”Generate Bitstream” icon shown by
Figure 22 was clicked, and the ”Yes” box selected. Default
settings in the following window were selected Figure 23.
For a short time, a status bar showed, then the synthesis and
implementation process followed. Its status could be seen by
looking at the status indicator at the top right of the Vivado
software, next to the exit button Figure 24.

Fig. 22. Generate Bitstream Icon

Fig. 23. Generate Bitstream Icon

Fig. 24. Bitstream Generation Status

When the bitstream generation is complete, a message box
popped up asking whether the user would like to see the
implemented design, view reports, open hardware manager,
or generate memory configuration file. Since none of these
options were relevant, ”Cancel” was selected.

The next step was to export hardware. This was done by
selecting ”File - Export - Export Hardware,” checking the
”Include Bitstream” box, and clicking ”OK” Figure 25. If an
overwrite dialogue box came up, the choice to overwrite the
previous bitstream file was selected.

Fig. 25. Export Hardware Step

Lastly, the SDK was opened by selecting ”File - Launch
SDK”. The SDK allows the user to write the bitstream to the
Arty and to write programs for the Microblaze soft processor.

IV. PROGRAMMING WITH SDK

When the SDK is launched it should open up a new window.
Once this new window is up a new project was created by



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 6

going to ”File - New Application Project”. A window will pop
up in which the project can be named. The rest of information
should be auto-populated as shown Figure 26. After the project
was named, ”Next” was selected and then the ”Hello World”
Template was chosen Figure 27.

Fig. 26. Name SDK Project

Fig. 27. Select Hello World Template

Once this is built, the ”src” file under the project explorer
was opened and ”helloworld.c” was opened since this was the
main file for the SDK C code to be written to the device. The
code originally contained in this file was then replaced with
the code shown in Figure 28. This code is set up to read from
the development board’s buttons and switches and then write
to the LEDs. To do this the Gpio peripherals are initialized
and then their directions were set. Then inside of a loop, the
values of the switches and buttons were read. The value of the
switches were written to the LED outputs. The values of the
buttons were displayed by writing to the serial port.

Fig. 28. C-Code To Implement With MicroBlaze

Once the code had been written, it was saved which will
automatically compile and error check the code. After the code
has compiled it can then be written to the FPGA. Before this
step was done, the Arty board was plugged into the computer.
In the quick selection tool bar the Program FPGA button was
clicked which opens the window for programming the FPGA
shown in Figure 29. The settings were ensured to match that
shown in Figure 29. After this ”Program” was selected which
programmed the FPGA.



ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 7

Fig. 29. Program The FPGA

Once the FPGA had been programmed the program needed
to be ran. This was done by selecting the drop down menu next
to the green run button and then selecting ”Run as - Launch
on Hardware (System Debugger)”. This will run the program
on the FPGA which can be tested by flipping the switches on
the board and seeing that the corresponding LEDs light up.
The serial output can be tested by opening a serial terminal
such as Putty, and properly connecting to the COM port that
the board is connected through.

V. CONCLUSION

The implementation in this report configured the Arty FPGA
evaluation board to use several of the built-in LEDs and
switches to perform basic actions using a microcontroller-like
C programming environment. While the ability to program
a microcontroller using C or similar languages is useful in
its own right, the Arty board provides much more versatility
because it can be programmed to have custom logic gate-
based functionality that does not necessarily rely on the
built-in interrupt or loop-based structure of the Microblaze
microcontroller, meaning that some actions can be completed
much more quickly and/or reliably than if one were to rely on
the base microcontroller alone. In addition, both the FPGA
and microcontroller are effectively integrated into a single
chip, meaning the complexity of wiring both devices together
is completely eliminated. This advantage over conventional
solutions can save large amounts of time when designing and
testing early prototypes.

REFERENCES

[1] Vivado Installer
https://www.xilinx.com/support/download.html

https://www.xilinx.com/support/download.html


ARTY MICROBLAZE SOFT PROCESSING SYSTEM IMPLEMENTATION TUTORIAL 8

APPENDIX A
FINAL BLOCK DIAGRAM

D
D

R
3

a
xi

_
gp

io
_l

ed

A
X

I 
G

P
IO

S
_

A
X

I
G

P
IO

G
P

IO
2

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

a
xi

_
gp

io
_s

w

A
X

I 
G

P
IO

S
_

A
X

I
G

P
IO

G
P

IO
2

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

a
xi

_
m

e
m

_
in

te
rc

on

A
X

I 
In

te
rc

o
nn

e
ct

S
0

0
_

A
X

I

M
0

0
_

A
X

I

S
0

1
_

A
X

I

A
C

L
K

A
R

E
S

E
T

N

S
0

0
_

A
C

L
K

S
0

0
_

A
R

E
S

E
T

N

M
0

0
_

A
C

L
K

M
0

0
_

A
R

E
S

E
T

N

S
0

1
_

A
C

L
K

S
0

1
_

A
R

E
S

E
T

N

a
xi

_
ua

rt
lit

e_
0

A
X

I 
U

ar
tli

te

S
_

A
X

I
U

A
R

T
s_

ax
i_

ac
lk

s_
ax

i_
ar

es
et

n
in

te
rr

u
p

t

cl
k_

w
iz

_
1

C
lo

ck
in

g
 W

iz
a

rd

re
se

tn

cl
k_

in
1

cl
k_

o
u

t1

cl
k_

o
u

t2

cl
k_

o
u

t3

lo
ck

ed

d
ip

_s
w

itc
he

s_
4b

its

le
d

_4
b

its

m
d

m
_

1

M
ic

ro
B

la
ze

 D
e

b
ug

 M
o

d
ul

e
 (

M
D

M
)

M
B

D
E

B
U

G
_

0

D
eb

u
g

_
S

Y
S

_
R

st

m
ic

ro
bl

az
e

_
0

M
ic

ro
B

la
ze

IN
T

E
R

R
U

P
T

D
L

M
B

IL
M

B

M
_

A
X

I_
D

P

M
_

A
X

I_
D

C

M
_

A
X

I_
IC

D
E

B
U

G

C
lk

R
es

et

m
ic

ro
bl

az
e

_
0_

a
xi

_p
e

rip
h

A
X

I 
In

te
rc

o
nn

e
ct

S
0

0
_

A
X

I

M
0

0
_

A
X

I

M
0

1
_

A
X

I

M
0

2
_

A
X

I

A
C

L
K

A
R

E
S

E
T

N

S
0

0
_

A
C

L
K

S
0

0
_

A
R

E
S

E
T

N

M
0

0
_

A
C

L
K

M
0

0
_

A
R

E
S

E
T

N

M
0

1
_

A
C

L
K

M
0

1
_

A
R

E
S

E
T

N

M
0

2
_

A
C

L
K

M
0

2
_

A
R

E
S

E
T

N

m
ic

ro
bl

az
e

_
0_

lo
ca

l_
m

em
or

y

D
L

M
B

IL
M

B

L
M

B
_

C
lk

S
Y

S
_

R
st

m
ig

_
7

se
ri

e
s_

0

M
e

m
o

ry
 I

n
te

rf
a

ce
 G

e
ne

ra
to

r 
(M

IG
 7

 S
e

rie
s)

D
D

R
3

S
_

A
X

I

sy
s_

rs
t

cl
k_

re
f_

i

u
i_

cl
k_

sy
n

c_
rs

t

u
i_

cl
k

m
m

cm
_

lo
ck

e
d

sy
s_

cl
k_

i

in
it_

ca
lib

_
co

m
p

le
te

ar
es

et
n

p
us

h
_

bu
tt

on
s_

4b
its

re
se

t

rg
b

_l
ed

rs
t_

m
ig

_
7

se
ri

e
s_

0
_

83
M

P
ro

ce
ss

o
r 

S
ys

te
m

 R
e

se
t

sl
o

w
es

t_
sy

n
c_

cl
k

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b

_
d

eb
u

g
_

sy
s_

rs
t

d
cm

_
lo

ck
ed

m
b

_
re

se
t

b
u

s_
st

ru
ct

_
re

se
t[0

:0
]

p
er

ip
h

er
al

_
re

se
t[0

:0
]

in
te

rc
o

n
n

ec
t_

ar
es

et
n

[0
:0

]

p
er

ip
h

er
al

_
ar

es
et

n
[0

:0
]

rs
t_

m
ig

_
7

se
ri

e
s_

1
_

10
0

M

P
ro

ce
ss

o
r 

S
ys

te
m

 R
e

se
t

sl
o

w
es

t_
sy

n
c_

cl
k

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b

_
d

eb
u

g
_

sy
s_

rs
t

d
cm

_
lo

ck
ed

m
b

_
re

se
t

b
u

s_
st

ru
ct

_
re

se
t[0

:0
]

p
er

ip
h

er
al

_
re

se
t[0

:0
]

in
te

rc
o

n
n

ec
t_

ar
es

et
n

[0
:0

]

p
er

ip
h

er
al

_
ar

es
et

n
[0

:0
]

sy
s_

cl
o

ck

u
sb

_
u

ar
t

Fig. 30. Enlarged Block Diagram


	Arty Board and MicroBlaze
	Installing Vivado
	Microblaze Implementation
	Programming with SDK
	Conclusion
	References
	Appendix A: Final Block Diagram

