The Robert Paulson Project

Prepared for:

Dr. Stephen Bruder
Dr. Kevin Wedeward

Written by:

Scott Dearie

Kevin Fisher

Brian Rgala
Steven Wasson

May 7, 2001

Abstract

The following report will show the design and concepts used in the creation of an
autonomous robot that could compete in the Trinity College Home Fire-Fighting Robot
Contest. The rules of this contest stipulate that the robot must navigate through a maze,
find a candle, extinguish the flame and then return to its original location. The robot was
required to sense its surroundings, and have closed loop motor control. We were able to
accomplish thistask with several weeks left in the term. With the extra time available we
implemented tone start and arbitrary starting point. They were not required but this

greatly reduced our score at the Trinity competition.

Table of Contents

N 0 1 ot OSSPSR 2
List of FigureS and TablES......uuuuereeereeerereeerereeeeeeeeeeeneeneeeeeeeeeeeeeeeeseeseeeeseeenens 4
110 1 Tox o o PSPPSRI 5
Hardware
(01 7SS RSP S 6
Sensors
TONE DECOUEScotieiiiieteeee ettt e 8
WHhiIte LiNE SENSON.......ccvieiieee st eie sttt e e ste e e s e 9
Front Wall SENSOKcooiiiiiiececie st 10
Side Wall SENSOIS.......ccceiieeiie e 11
Flame SENSOIS.........ooiie e 12
Hamamatsu UV Tron & Driving CirCuitcccceveeveeieeseeieesenne 13
FaN CONLIOL ... e 13
H-bridges
ANEGrO 2998ot e 15
National LMDI8200Tccccerererierierieriesiesiesiesesesseesessee e s snees 15
MOLOr SEIECHION......cccuiicieccie e 16
LED BOBIQ.ocuiiiiiuieieiesie ettt st 16
Software
Digital Position and Speed DeCOAErS..........ccvvveerieecieniere e 17
HCL12 CONNECLIONS......ccveeiuieiiiecieeieeste et et te b e ene e sae e neenneas 19
(0010 (S {1 (1 = 19
Closed-100p CONLIO.........cooiiieeee e 20
Arbitrary Starting POINtcccooiveiiiiesicse e 21
MBZE NAVIGALION.....coeiiiieieeieeie ettt e e re s 21
Extinguishing Flame and Returning HOME..........cccccvveeverceveese e 23
070 (B 1 o 1 0o F PSPPSR 23
REPrOAUCTION COSLeveeieeie et ee sttt re e naesbeennesreenneennens 24
High POWEr BUAGEL.........oiuiiieiieeeee ettt s 25
LOW POWES BUAGELeeveeiecieciece ettt st nne e 26
(00 1o 1175 Ko o 1SRRI 27
Appendix A: Motor Selection Criteria........cceveeierieerieeie e 28
AppPendiX B: AItEraCOUEccoieriirieieee et 29

APPENdiX C: HCL2 COUE.......coieerieeeeseerie e seesteeee s ie e e sae et aesreenneennens 39

List of Figuresand Tables

Figures
1: BOMOM Of Plat@ L.....ccueeieeeeeceecie et 7
P2 o) o o = (= PR 8
3: TONE DECOUEN CIICUIT.......eccveieeesieeieeeesieeie e e et e e 9
4: WhITE LINE SENSOK ...ttt etee ettt sttt ste e e e e sreeenne e 10
5: Front Wall SENSOTcccviiecicie ettt 11
6: GP2D12 CharaCteriStiCS......cevueriinieerierie e sie e 12
72 FlamME SENSON.....ccviceeecieee ettt ettt e e eeeenee e 13
8: Fan CONtrol SYSEMcceiiiiiieiieee e e 14
9: Allegro 2998 system with opto-isolation...........c.ccecveeeeveereseeseesie e 15
10: Digital Position and Speed DeCOoders.........coovereriereenenieeneeneesie s 16
11: High POWer BUAGEL........cceoeeeeeie e 26
12: LOW POWEr BUAGELcoiuiiiiiieieeie e e 26

Tables
1: ConnectioNSto the HCL2........ocooieieieeeeeee e 19
2: DeveloOpment BUAQELcoceeieeee et 24
3: Reproduction BUAQEL........coccoieeriirierieee e 25

I ntroduction

Scope

This group was tasked to design and build a robot that could navigate a maze,

detect aflame, and extinguish a flame while adhering to the following design criteria:

N o o &~ wDd R

Fully Autonomous

Optical isolation between high-power and low-power electronics
Demonstrate motor speed and/or position measurements through Altera PLD
Closed-loop speed and wall-following control

Main program must bein'C'

Neat and clean final design with good connectors

Spend no more than $300

We added the following criteria to make our robot more competitive at the international

competition:

1
2.
3.

Start off a3.5KHz tone
Start in any room of the maze
Return to the room that it started in

Purpose

By reading this paper it will be possible for a person with the following

prerequisites to be able to reconstruct our robot and emulate our results.

1

In-depth knowledge of the MC68HC12 micro-controller.

2. Anaog and digital circuit design.
3.
4

Principles of linear time-invariant systems.

Proficiency in C programming

Hardware design

The hardware functioned as the body, eyes, ears, and mouth of our robot. It
allowed our robot to have avery high level of awareness of its surroundings. It was able
to see the walls of the maze, look for fire using two methods, and listen for a tone that
indicated that it should start. Our hardware consisted of the following components:

Chassis: thisisthe body of the robot that all other items are attached to.

Tone sensor: this allowed the robot to listen for a tone:

Wall sensors: these allowed the robot to measure the size of rooms and follow
walls

Fire sensors: these two devices allowed the robot to see a fire by detecting UV
light and visible light.

LED Board: this device alowed our robot to tell us what signals it was receiving
from its other components.

Chassis

No matter how good our subsystems were they would be useless without a good
chassis to mount them on. We discovered this very early on when we were having
problems getting caught on the walls of the maze. The chassis of our robot was designed
to fit within the following criteria. It should be able to carry al of our necessary sensors
on one plate, have a symmetrical layout, isolate high and low power sensors, be
lightweight, and have alow center of gravity with its weight centered more to the rear.

Of all these requirements, the toughest to meet was to have a robot with a low
center of gravity and still have most of its weight in the rear. To achieve this we mounted
our high power supply in the rear of the robot with the micro-controller above it. This
ensured that our robot would not tip forward when it had to make a sudden stop. From
this basic design we then placed the rest of our sensors on the robot chassis.

On the bottom of the plate we placed the white line sensor at the front followed by

the H-bridge. At the middie of the robot we placed the motors. This ensured that the

robot would still have a symmetrical design. The top plate consisted of the wall and fire
sensors. This design allowed us to isolate the high and low power sensors as much as
possible; the white line sensor being the exception. The wall and fire sensors are light in
comparison to the power supply, so the placement of these sensors had little effect on the
distribution of weight.

In order to mount the fan we added a second plate over the HC-12. We also used
this second plate to mount our low power supply, tone decoder, fan relay, and LEDs.
This plate did throw off the center of gravity some, but not so much that we had to
change our design.

After we had a functional design we made our final plate. Having a preliminary
plate was very useful because we were able to experiment with sensor placement without
harming the final look of the robot. This approach also allowed us to start working with
the robot without spending time making a perfectly round plate and to note any defectsin
our design. The major flaw in our design was that our wheels were on the outside of our
chassis. The final plate was constructed from 1/8” Plexiglas. The final plate design is
shown below. Note the new placement of the motors.

White Line Detector

H- Bridges

Motors

Opto-isolation
Power supply

Figure 1: Bottom of Plate 1

Wall Sensor

Heat Sensors

Hamamatsu

HC-12

Plaae2 =

Figure 2: Top of Plate 1

Sensors

All of the following sensors were integrated with the HC-12 to operate as one unit
that allowed our robot to sense and react to its environment.
Tone Decoder

The tone decoder will start the robot when the microphone picks up a “smoke
alarm” going off. We used a LM567 PLL chip by National Semiconductor. The circuit is
active low. When asignal of 3.5 kHz goes into the microphone the logic drops from 5V
toOV. Thereisa 10k pot on pin 5, which will allow us to adjust the frequency between 2
to 4 kHz. The pot was necessary because the tone generator gets weaker with extended
use. C3 and the center frequency determine the bandwidth. C2 and R2 are used to get
the center frequency. The equation for center frequency is fo=1/(1.1*R2*C2). The
equation for bandwidth is BW=1070sgrt(vi/fo* C3). Where vi is the input voltage which
is less than 200mv. We gave it a 10% bandwidth to enable the tone to go low only on a
signal near the desired frequency. The tone must be about an inch away for it to activate.
This was useful because it prevented other group’s tones from starting our robot.
Overal the device was useful because it made testing the robot easier and gave us atime

reduction in the competitions.

5y

c1 :
RT = ok

in I 3
put 11~ | |
3 &
| T o
R3 2k R2 <o
' 6
| 2 P 1
R4k

c2 l | |
l Jooae S| I
i 1 u u

Figure 3: Tone Decoder Circuit

White Line Sensor

While traveling the maze, the robot will encounter white lines at two specific
times, when entering or exiting a room and when it is near the candle. In order to
observe these lines we chose to look for the transition from dark to light. To do this we
used the fact that IR light is reflected by a white surface while it is absorbed by a black
surface.

We purchased an IR emitter/detector pair from the local Radio Shack to generate
and detect the reflected light. The emitter diode was fabricated to only generate a
specific frequency of light. Also the detector was designed to only detect the frequency
that the diode was emitting. This made it so that the slightest change in frequency would
not be detected. This was useful because if the light was reflected back at an angle (as if
from adrop of wax) it would not be detected.

The total white line system consisted of the IR emitter/detector matched pair, a
Schmitt Trigger, a set of biasing resistors, a 10K pot, and an ambient light shield. The

transistor was biased to 5V when it detected IR light this signal was then fed into a

10

Schmitt Trigger. The Schmitt Trigger was necessary to filter the biased signal into a
clean digital signal. The complete schematic can be found below. This sensor worked
better than expected and was able to operate in complete darkness and direct light. It was

adjustable to detect awhite line from 1/8 of an inch to 6 inches off the maze floor.

Figure 4: White Line Sensor
Front Wall Sensor

To conserve analog-to-digital ports on the HC12 microcontroller, we decided to
digitize our front wall sensor to output a logic “1” or logic “0.” With our maze
navigation strategy, we did not need to know how far away awall wasin front of us, only
if there was awall in front of us. This data could be sent to the HC12 through a single
bit, as opposed to a full eight-bit port. The circuit that we came up with to digitize the
front wall sensor’s signal uses a comparator and a potentiometer to make the threshold
distance adjustable.

Digitizing the front wall sensor proved to be extremely advantageous when we
later decided to incorporate two analog right wall sensors; thus using up all our available

anal og-to-digital ports.

11

+5v

|

GE2D 120 Chatpat
EESL
El ; N1+ OTUT1 ,%,2
+5v - g IM1- onuT2 1
EE:1 T M2+ HiC 5
12 IHZ- HC 15
HC HC
CHD — LM3I194M(147
E2
POTL

Figure 5: Front Wall Sensor Circuit

Sde Wall Sensors

Our robot uses GP2D12 IR sensors to measure its distance from a wall. These
sensors are accurate from 9cm to 80cm. Thiswas ideal for our environment because the
distances that our robot measured in the halways of the maze ranged from 12cm to
24cm.

These sensors emit a voltage that is proportional to the distance that the robot is
from the wall. The closer the robot is to awall the higher the voltage. This voltage was
then sent to one of the onboard A/D converters and changed into a hexadecimal value.
The data sheet for these sensors state that they are accurate starting at 9cm, however we
found that the sensors we used were accurate from 11cm as in shown by Figure 6. Even
though this is alarming it did not affect our robot because in the worst-case scenario our
sensors were 12cm from the wall. Even though the distance from the wall and the
voltage are proportional they are not linear. While wall following, however, the portion

of the curve that we were operating on was fairly linear. This can be seen on Figure 6.

12

GP2D12 Voltage vs. Distance
3
2.5
2
()
(o))
g5
o
>
1
0.5
O T T T T T
0 5 10 15 20 25 30
Distance

Figure 6: Characteristic of the GP2D12

Flame Sensors

For short-range fire detection we decided to use two PN168 phototransistors. In
normal lighting conditions the PN168’s would saturate so they were filtered with tinted
Plexiglas. The Plexiglas also served as housing for the sensors. The sides were covered
with electrical tape to block out the ambient light. Each PN168 had a 10k pot to adjust
the value of the emitter voltage. This allowed us to adjust the sensitivity. When the
output for both PN168s were the same the flame was lined up with the fan. If the output
was higher for one PN168, the robot would move in that direction until both values were
the same. When the robot noticed a white line and the PN168 output values were in the

correct range the fan would turn on.

13

B

Figure 7: Fire Sensor
Hamamatsu UV Tron & Driving Circuit

From the beginning of our design phase, we chose to utilize the R2868 UV Tron
flame sensor from the Hamamatsu Corporation. This sensor can detect a lighter-sized
flame at distances greater than five meters. Hamamatsu also sells three types of driving
circuit boards (C3704) for use with their R2868 sensor. The difference between these
three boards is the supply voltage requirements. We chose to use the C3704-02 driving
circuit board because it requires 5v DC to operate — the same as all of our low power
circuitry.

The C3704 driving circuit board outputs a 1ms wide pulse if a flame is detected.
The detection sensitivity of the circuitry is adjustable on the board itself viaa jumper. In
using the UV Tron assembly, we had the HC-12 microcontroller look for any pulses from
the C3704 driving circuit board within a two-second interval. This two-second interval
required us to stop the robot at the entrance to a room in some instances.
Fan Control

The fan control system is comprised of three main components:. the fan, a relay,
and the fan power supply. The main component of this system isthe relay that is used to

turn on and off the fan. Initially, we planned on using an Antex solid-state relay that was

14

opto-isolated. However, the fan assembly that we used drew too much current and fused
severa relays closed before we tracked down the problem.

The specifications for the DC motor that we used stated that it would only draw a
maximum of 2 amps continuous. However when we attached our blade to the motor it
drew 4 amps continuous. In order to correct this we had to fabricate our own relay. The
key component that was used in this relay was a MJ2955 power transistor. We chose this
transistor because it was able to handle 15 amps and 150 watts continuous.

Across this transistor we had a maximum of 17 V at 6 amps. This calculates to
102 watts dissipated well within the given specifications. The complete relay was
constructed of 3 transistors and a couple of resistors. The one disadvantage to this design
is that we had to connect the high and low power grounds. By doing this, our robots high
and low power systems were no longer isolated. We were able to find an isolated relay
that met our requirements but did not have the funds or the time to implement this. The
complete fan control system is shown below. Note that the system is active high, when

Port P5 sends a5V signal the fan will turn on.

........ T WZOSE 150U 164
....... - Pawer Transistar -

o Tpd .
Pawer transistor -

Figure 8: Fan Control System

15

H Bridges
Allegro 2998

Coming up with our initial design, we chose to use the Allegro 2998 H-Bridge
largely because of its cost-effectiveness. With one $7 part, we could control both of our
motors. The Allegro 2998 could provide 3A peak current and 2A continuous. Our
Maxon 6W green-body motors required a start-up current of less than 2A. This was well
within the specifications of the Allegro 2998.

Due to problems that arose with the Maxon 6W green-body motors we had to go
with the Maxon 11W motors. These 11W motors had a start-up current of 3.25A — more
current than the Allegro 2998 could handle. This problem arose one week before the
Trinity College Fire Fighting Home Robot contest was to take place. To resolve this
major issue before the international competition, we were forced to borrow an H-Bridge

PCB board from Dr. Kevin Wedeward that used the National LMD18200T H-Bridge.

EY i — g
—— =R B
REEl —— = — v\/_‘
j— == :: REL
=
B2 =R
—— b == FE
REsl s |
e L REL
i OFE
54
E¥ i — i
T ret i — L1 Bl T T 1l
He= —::——1_'? L 1| eriasEs B
—= | =t FrGasEs | ——
ks . = NTla “uTIE -
- 3 0 T . T T e ———
REsl e | Veb vas ——
== I g Vo D J i
1
W OFE H] LCRCHE] 2]
2 L1
3
q

1 e
HEN L 1w B oour 2
—_— th
i LrIENSCTLE)
-

Figure 9: Allegro 2998 H-bridge system with opto-isolation

glnmnw.;_l

=

glx..”.;_l

National LMD18200T
As mentioned previously, we had to use the National LMD18200T H-Bridge

chipsin our final robot design. The National chips could only control one motor per chip

16

(as opposed to two motors per chip with the Allegro), so we required the use of two of
the National chips. The LMD18200Ts can handle a peak current of 6A and a continuous
current of 3A. This limitation was more than enough for the Maxon 11W motors that we

ended up using.

Motor Selection

At the start of the semester we analyzed all of the available motors with respect to
the torque, start up current, continuous current, encoder design, and speed. This analysis
can be found in Appendix A. After this analysis we concluded that the motor that suited
our needs the best was the Maxon 6-watt design. It had a quadrature encoder, a 14:1
gearhead ratio, and avery low startup and continuous current.

As the semester progressed we had to switch motors due to circumstances beyond
our control. One of the motors would short and cause our h-bridge to blow. We were
persuaded to switch to the Maxon 11-watt motor due to supply issues. When we
integrated this motor into the robot it performed better than our original choice. During
the application of this motor we discovered that it had a better response than the 6-watt
motors. The turn in place routines were more accurate as well as the wall following.
These motors were shorter and thicker than the Maxon 6-watt motors. If we used this
motor to begin with our chassiswould be smaller. The one draw back to these motorsis
that our original wheels did not fit the axle. As a consequence of this we had nearly no
ground clearance.

LED Board
For the main purpose of testing, we designed a board of LEDs that would light if

certain subsystems activated — white line sensor, front wall sensor, and tone decoder. We

17

also used two lights as power indicators. We also had places wired up for the
Hamamatsu sensor and one miscellaneous component, but these were never used.

The LED board proved very useful. We could not tell visually if our high power
switch was open or closed without an LED indicator. Having systems wired to LEDs
also expedited the calibration process. For example, we could calibrate the tone decoder
by sounding the buzzer and turning a potentiometer until the LED reserved for the tone
decoder system lit.

There was one minor problem with the LED board. With the low power indicator
connected to the LED board, the low power battery drained at a much faster rate. We
resolved this issue by only connecting the low power indicator and systems to the LED
board when doing calibration testing. This was not as much of an issue with the high
power indicator because our high power batteries had a much greater charge capacity.
The high power indicator was also the most useful of the LEDs when running the robot in
the maze because it was the only way we could tell if the motors were getting power.
Software

The following describes the software developed for this project. Software

includes all devicesimplemented in Altera and the C program for the HC12.

Digital Position and Speed Decoders

We implemented quadrature position and speed decoders into our existing Altera
memory expansion board designed in EE 308. The encoder channels were inputted into
our Alterachip. A state machine was created to generate a pulse for every state transition
of the encoder channels for each motor. Then, 9-bit counters counted these pulses.

Simple D flip-flops were used to determine and store the direction of rotation of the

18

motors. The counters were configured so that if the motors rotated forward, they counted
up. Otherwise, they counted down.

The value from the counters is latched into speed registers. The latch signal for
this comes from Port P2 of the HC12. This makes it where the latch frequency can be
adjusted in software via the HC12. The counters and speed registers are then sign
extended to 16-bits and memory mapped into our memory expansion. The left and right
motor tick counters are mapped to addresses 0x0400 and 0x0402. The left and right
motor speed registers are mapped to address 0x0404 and 0x0406.

Figure 10 on the next page is a block diagram of the digital position and speed decoders
and their interface with the HC12. Appendix B contains the Altera code used to

implement this.

Delay
Reset Latch
LCHA Pulse 9-hit [0x0400 Speed [0x0404
LCHB Generator Counter Register
Up/Down
PP2
¥l
— Direction “_'Ex;;]:]z:zn — 172
Detector
Delay
Reset Latch
RCHA Pulse 9-bit |0x0402 Speed |0x0406
RCHB Generator Counter Register
Up/Down
— Direction
Detector

Figure 10: Block diagram of the digital position and speed decoders and the interface
between them and the HC12.

19

HC12 Connections

The table below shows what HC12 resources are being used and where all the
devices described earlier connect. It first lists the analog input devices, then the digital

input devices, and finally the digital output signals needed by various other devices.

Device Port | 1/0

Left Front Sensor Port AD2 Input

Left Rear Sensor Port AD3 Input

Left Infrared Sensor Port AD4 Input
Right Infrared Sensor Port AD5 Input
Right Front Sensor Port AD6 Input
Right Rear Sensor Port AD7 Input
White Line Sensor Port DLCO | Input
Front Wall Sensor Port DLC1 | Input
Tone Decoder Port DLC2 | Input
Hamamatsu UV Sensor Port T7 Input
Left Motor PWM Signal Port PO Output
Right Motor PWM Signal Port P1 Output
Speed Decoder Latch Signal Port P2 Output
Fan Relay Signal Port P5 Output

Left Motor Direction Signal Port P6 Output
Right Motor Direction Signal Port P7 Output

Table 1; Connectionsto the HC12

Code Structure

The C code for this project is divided up into four header files and the main C
program file. Thisfirst header fileis named hc12.h and it contains definitions of pointers
to various HC12 registers used in this project. The second header file is setup.h which
contains functions used to setup various ports on the HC12 to interface with all the
devices. The third header file is functions.h. This header file contains functions used to
detect the robot’s environment, move through the maze, and find and extinguish the
flame. The fourth and fina header file is navigations.h which contains specia functions
for navigating through the maze to find the fire, extinguish it, and return to the robot’s

starting place. The man C program file includes these header files and uses their

20

functions to carry out the robot’s mission of extinguishing the flame. These files are
located in Appendix C.

Closed-loop Control

To effectively and efficiently navigate through the maze, we implemented closed-
loop control. Four basic functions were implemented: closed-loop speed control to go
straight at a desired speed, closed-loop speed control with wall following to go parallel to
awall at adesired speed, turn in place for a desired angle, and flame follow. All of these
functions were implemented in a Real Time Interrupt service routine that was executed
every 8.192 ms.

For closed-loop speed control, the error between the desired speed and actual
speed is added to the present duty cycle. After thisis done three times, the desired speeds
of the motors are adjusted to correct the robot’ s orientation to the wall. When the robot is
paralel to the wall, the desired speeds are adjusted to correct for the robot’s distance to
thewall.

Closed-loop speed control is aso necessary for turning in place. It ensures that
both motors are turning at the same speed in opposite directions. To turn in place for a
specific angle, the position decoders are used. The robot turns in place until the number
of motor ticks counted by the position decoders reaches a set number for a desired
angular rotation.

The final closed-loop control implemented is flame following. This directs the
robot to the flame. It does so by adjusting the duty cycles to the motors to correct the
robot’s orientation to the flame, line it up with the flame, and drive towards the flame.
The two PN168 flame sensors determine the orientation of the robot to the flame. If the
outputs of the two sensors are equal, then the robot is perfectly lined up with the flame.

Otherwise, the flame is of f to one of the sides of the robot.

21

Arbitrary Starting Point

In addition to starting from the home circle, we designed our robot to be capable
of starting from any position within any room of the maze. This is done by first
determining if the robot is at the home circle by checking if there is a white surface. If
there is a white surface, meaning that the robot is on the home circle, the robot will orient
itself parallel to the nearest left wall and begin navigating the maze. This means that the
robot can start at the home circle at any orientation.

If the robot isin a room, however, it scans the room to find the nearest left wall.
Then, it drives towards the nearest |eft wall that it detected. Next, it will left wall follow
through the room until there is no left wall, which occurs at the entrance of the room. It
then drives forward until it reaches a front wall. If the robot has crossed a white line
while left wall following, then the robot has started from room four and has exited it.

If the robot is in either room one, two, or three, it scans the room from the
entrance to determine its size. Then it exits the room. When it reaches a front wall, it
checksif thereisaright wall. If thereis no right wall and the room is large, the robot has
started from room 1. If there is aright wall and the room is large, the robot has started
from room 2. If there is a right wall and the room is small, the robot has started from
room 3. Finally, when the robot is out of the room facing the wall opposite of the room, it
makes a 90 degree left turn in place and begins maze navigation.

Maze Navigation

To successfully locate a flame within the maze, our robot must have its behavior
pre-programmed. With the limited memory and timeframe, we designed the robot’s
behavior with simplicity and ease of modification in mind. This led to an extremely
modular final set of instructions. Benefits of the modular design included limiting the

redundancy of code and easily being able to correct unacceptable behavior. 1f we wanted

22

the robot to perform the same actions in many parts of the maze, we could call a single
function multiple times. If we discovered problems with the robot’s behavior in a
specific part of the maze, we could easily correct the error by atering the function written
for that part of the maze.

An added bonus of a modular approach was the ease of integrating arbitrary
starting point capability. Once the robot discovered its starting position and entered into
the hallways of the maze, we could then have our robot run the modular functions in a
certain order to successfully search the entire maze for aflame.

No matter where the robot started from, the rooms were searched in the same
general order each time. The hierarchy is asfollows. room 2, room 1, room 3, and finally
room 4. The reasoning behind this order was that the entrances to rooms 2 and 1 are
fairly close together, so we could quickly scan those two rooms and have searched half of
the maze. We searched room 2 before room 1 because our long-range Hamamatsu fire
sensor was mounted to look to the right hand side of the robot. The way the rooms are
configured makes it easy to search room 2 and then search room 1 on the way back.
Room 4 was our last priority in all cases because the entrance was far away from any of
the other rooms. One benefit of using the arbitrary starting point mode was that we only
had to search three rooms because the flame could not be placed in the room of origin.
The only problem that we had to deal with in our maze navigation was the length of time
it took the Hamamatsu fire sensor to scan a room. To scan the larger rooms (1 and 2)
with complete accuracy, our robot had to pause for a second or two at the entrances to be
sure there was not a flame present. In most cases this added to our total run time, but it

was unavoidable with the nature of the Hamamatsu fire sensor.

23

Extinquishing Flame and Returning Home

Once a flame has been detected by the Hamamatsu, the robot enters the room in
which the flame was detected and begins flame following. The flame follow procedure
directs the robot towards the flame without hitting a wall. Once a white surface has been
detected and our flame sensors verify the presence of the flame, the fan is turned on and
the robot makes a 60-degree sweep to extinguish the flame. Once the flame is
extinguished, the robot turns around, exits room, and resumes its maze navigation to
return to its starting point. Once the robot has returned to its home, the code is exited.

Production Cost

At the onset of the semester each group was allocated $300 to use in the
construction of their robot. We kept avery detailed list of expenditures and we were
fairly conscious of this ceiling throughout the semester. Due to the problems with the
Maxon 6W green-body motors it was unavoidable that we would go over-budget. We
spent much time, effort, and, as one can see from the table, $70 on Allegro 2998 H-
Bridge chipsin discovering the origin of the problem. In changing to the Maxon 11W
motors, we needed to purchase two National LMD18200T H-Bridge chips and an H-
Bridge board (listed singularly as “H-Bridge Board” in the table) at $30. Combined,

these unavoidable costs account for all but $3.95 (3.8 percent) of the difference.

24

ltem Description price/lea quantity cost
Maxon 11-Watt motor: $50.00 2 $100.00
H-Bridge (Allegro)UDN2998W $7.00 10 $70.00
IR distance sensors:0-80cm: GP2D12: $10.00 4 $40.00
Hamamatsu R2868 UVTron $35.52 1 $35.52
Antex solid-state opto-isolated2.5A DC relays: $5.00 5 $25.00
Hamamatsu C3704-02 Driving Circuit $22.20 1 $22.20
Rechargable 7.2V NiCad pack: $10.00 1 $10.00
Caster wheel assembly $10.00 1 $10.00
Schmitt trigger optoisolators $1.50 6 $9.00
4-pin audio locking conn. female: $1.50 6 $9.00
IR distance sensors:0-30cm: GP2D120: $8.00 1 $8.00
crimp contacts: (i.e. pins for above) $0.10 80 $8.00
wheels (pair) $6.68 1 $6.68
Wire-wrap DIP socket2x8-pin: $1.50 4 $6.00
Terminal housing (with pins) 4-pin (pair): $1.25 4 $5.00
Terminal housing (with pins) 6-pin (pair): $2.50 2 $5.00
1.5” rubber wheels: $2.50 2 $5.00
Boxed headers2X5-pin (male) $1.00 3 $3.00
Perf-board 2.25"X1.8™ $1.25 2 $2.50
Project enclosure: Small $2.00 1 $2.00
Perf-board 1.5"X1.75™ $1.00 2 $2.00
Fuse holder (GMA fuses): $1.00 2 $2.00
4-pin audio locking conn. male-straight: $0.50 4 $2.00
4-pin audio locking conn. male-right-ang.: $1.00 2 $2.00
GMA fuses(1,2,4,6A): $0.20 8 $1.60
Terminal housing (with pins) 2-pin (pair): $0.75 2 $1.50
Electret mic (with-leads): $1.50 1 $1.50
10k Ohm multi-turn pot: $1.50 1 $1.50
Wire-wrap DIP socket 2x7-pin: $1.25 1 $1.25
3/16” shrink tubing (price per inch) $0.10 12 $1.20
3/32” shrink tubing (price per inch) $0.10 12 $1.20
Tone decoder: NE567 $1.00 1 $1.00
Ribbon Cable per ft. $0.50 2 $1.00
Plexiglass $1.00 1 $1.00
Misc. spacers/standoffs 4-40 spacers: $0.10 8 $0.80
Misc. switches: $0.50 1 $0.50
GRAND TOTAL $403.95

Table 2: The development budget for this project

Reproduction Cost

While we were astonished at exactly how costly our robot was to design, we were
curious as to how much it would cost to reproduce the robot. In compiling this second
price list, we assumed the same cost per component as the electrical engineering

department was charging us. In some cases, these prices differ greatly from the retail

25

value of the components. For the purposes of this theoretical reproduction cost, we also

included the prices of items that were donated to us.

Item Description price/ea quantity cost

Maxon 6-Watt 22mm motors (green body): $50.00 2 $100.00
IR distance sensors:0-80cm: GP2D12: $10.00 4 $40.00
Hamamatsu R2868 UVTron $35.52 1 $35.52
Terminal housing (with pins) 4-pin (pair): $1.25 27 $33.75
Hamamatsu C3704-02 Driving Circuit $22.20 1 $22.20
Rechargable 7.2V NiCad pack: $10.00 2 $20.00
Caster wheel assembly $10.00 1 $10.00
IR distance sensors:0-30cm: GP2D120: $8.00 1 $8.00
H-Bridge (Allegro)UDN2998W $7.00 1 $7.00
Schmitt trigger optoisolators $1.50 4 $6.00
Antex solid-state opto-isolated2.5A DC relays: $5.00 1 $5.00
1.5” rubber wheels: $2.50 2 $5.00
Misc. spacers/standoffs 8-32 spacers: $0.10 35 $3.50
5V regulators: 7805 $0.75 3 $2.25
Fuse holder (GMA fuses): $1.00 2 $2.00
3.4kHz 9V buzzer: $1.50 1 $1.50
Electret mic (with-leads): $1.50 1 $1.50
Reflective IR emitter/detector pair: $1.50 1 $1.50
1-turn pots10k Ohm $0.50 3 $1.50
Ribbon Cable per ft. $0.50 3 $1.50
3/16” shrink tubing (price per inch) $0.10 12 $1.20
3/32” shrink tubing (price per inch) $0.10 12 $1.20
Tone decoder: NE567 $1.00 1 $1.00
Plexiglass $1.00 1 $1.00
Misc. switches: $0.50 1 $0.50
GRAND TOTAL $312.62

Table 3: The reproduction budget for this project

High Power Budget

On the high power side of our robot, we were using 16 watts in normal operation
—disregarding the fan. At 14.4 volts, the high power systems drew 1.1 amps. Our high
power battery could carry acharge of 3.6 amp hours of charge. With these figures, our
robot could theoretically run for about 3 hours and 15 minutes. Our high power battery

consisted of two 7.2 volt Radio Shack remote control car batteries connected in series.

L ow Power Budget

Figure 11: High Power Budget

30W

26

On the low power side of our robot, we were using 3.65 watts in normal

operation. At 7.2 volts, the high power systems drew 0.5 amps. Our low power battery

could carry a charge of approximately 1.75 amp hours of charge. With these figures, our

robot could theoretically run for about 3 hours and 30 minutes. Our low power battery

was a Korean cellular phone battery donated by Dr. George Cunningham.

HC-12

Hamamatsu
UV Tron

Batterv

5v]

GP2D120
Wall Sensors

Reaulator

2w

White Line
Sensor

Encoders

Fire Sensors

Figure 12: Low Power Budget

0.5w

0.15w

0.5w

0.1w

0.2w

0.2w

27

Conclusion
This project was a great success. We were able to implement all the required
design characteristics and all of our personal goals. Our robot placed 7" at the Trinity
Home Fire Fighting Robot Competition and 2™ at the local competition.
If we had the opportunity to develop a 3 stage of this design we would
implement the following improvements:
1. A smaller Chassis- Thiswould alow our robot to travel faster in the maze
2. A better gear-head ratio on the motors so that we could increase the wheel size
without speeding up the robot. Thiswould also allow usto do ramps.
3. Add severa digital front wall sensors so that we could implement object
avoidance.
With the implementation of these four changes we feel that this project would be ready

for public distribution.

28

Appendix A: Motor Selection Criteria

Motor Ratio Voltage No load Starting speed w/gh Toque w/GH power Quad
Current current

Max 6 green 14:1 18 26 1.28 680 182 532Y

Max 6 gray 30:1 9 78 4.9 346 262 96Y

Max 5 14:1 12 42 510 N

Max 11 10:1 18 37 3.25 920 182 136Y

Appendix B: Altera Code

29

% This code isfor HC12 memory expansion, as well as quatrature position and speed
determination. Position and speed are memory mapped to addresses 0x0400 through

SUBDESIGN memexp2

(

)

0x0407 %

E

R W
RESETn
LSTRBN

PA[7..0]
PB[7..0]

WEN
OEn

CS_MEM_ODDn
CS MEM_EVENnN:
: OUTPUT; % Demultiplexed address bits %

A[15..1]

LCHA
LCHB
RCHA
RCHB
LTCHclk

VARIABLE

demux[15..0]

CS MEM

IDB[15..0]
PA_OE

PB_OE
XX

LCNTI8..0]
RCNT[8..0]
LSPD[8..0]
RSPD[8..0]
LDIR
RDIR
CRESETn

. INPUT; % E-Clock %

: INPUT; % R/W Line %

. INPUT; % Reset line %

. INPUT; % Let'sustell if 8-bit or 16-bit access %

: BIDIR; % Address and Data (15-8) from HC12 %
: BIDIR; % Address and Data (7-0) from HC12 %

: OUTPUT; % Write Enable to memory %
: OUTPUT; % Output Enable to memory %
: OUTPUT; % Chip Select for odd addresses %

OUTPUT; % Chip Select for even addresses %

: DFF;
: NODE; % Tell's when address in range of memory %

. DFF;

: DFF;
. DFF;
: DFF;
. DFF;
: DFF;
. DFF;
: NODE; % Internal reset for counters to determine speed %

: INPUT; % Left Motor Channel A Encoder %

- INPUT; % Left Motor Channel B Encoder %

. INPUT; % Right Motor Channel B Encoder %

- INPUT; % Right Motor Channel B Encoder %

. INPUT; % Latch clock for speed determination %

% Demuliplexed address internal %

: NODE; % Internal databusto send to HC12 %
: NODE; % High when we want to send datato HC12 on %

% the HC12's Port A %

: NODE; % High when we want to send datato HC12 on %

% the HC12's Port B %
% Used to allow RESETn to be connected to pin 20 %

% Internal 9-bit counter for left motor speed %

% Internal 9-bit counter for right motor speed %

% Internal 9-bit latched speed register for left motor %
% Internal 9-bit latched speed register for right motor %
% Internal direction bit for left motor %

% Internal direction bit for right motor %

DFLCHA : NODE; % Digitally filtered LCHA %

DFLCHB : NODE; % Digitally filtered LCHB %
DFRCHA : NODE; % Digitally filtered RCHA %
DFRCHB : NODE; % Digitally filtered RCHB %
LTP : NODE; % Left Transition Pulse %

RTP : NODE; % Right Transition Pulse %
DFLTCH : NODE; % Digitally filtered latch clock %

% State machineto filter LCHA %
LCHAF. MACHINE WITH STATES (LA10, LA20, LA11, LA21);

% State machineto filter LCHB %
LCHBF. MACHINE WITH STATES (LB10, LB20, LB11, LB21);

% State machineto filter RCHA %
RCHAF: MACHINE WITH STATES (RA10, RA20, RA11, RA21);

% State machineto filter RCHB %
RCHBF. MACHINE WITH STATES (RB10, RB20, RB11, RB21);

LPG: MACHINE WITH STATES (LXX, LXnX); % State machine to generate %
% left transition pulse %

RPG: MACHINE WITH STATES (RXX, RXnX); % State machine to generate %
% right transition pulse %

% State machineto filter LTCHclk %
LTCHF. MACHINE WITH STATES (LTCH10, LTCH20, LTCH11, LTCH21);

% State machine to reset counters after speed has been latched %
CRST: MACHINE WITH STATES (CO, C1, C2, C3);

BEGIN

% The following state machines have E as there clock and the complement of
RESETnN as thee reset %

LCHAF.clk = E;

LCHAF.reset = IRESETN;

LCHBF.clk = E;
LCHBF.reset = |RESETN,

RCHAF.clk = E;
RCHAF.reset = IRESETn;

RCHBF.clk = E;
RCHBF.reset = |RESETnN;
LPG.clk = E;

LPG.reset = IRESETN;

30

RPG.clk = E;
RPG.reset = IRESET;

LTCHF.clk = E;
LTCHF.reset = |RESETN;

% Left direction flip-flop uses left channel B to clock in left channel A.
Thisis used to determine direction %

LDIR.clk = DFLCHB;

LDIR.clrn = RESETN;

LDIR.d = DFLCHA;

% Right direction flip-flop uses right channel A to clock in right channel B.

Thisis used to determine direction %
RDIR.clk = DFRCHA;
RDIR.clrn = RESETn;
RDIR.d = DFRCHB;

% The counter reset state machine %
CRST.clk = E;
CRST .reset = 'RESETN;

% The motor tick counters count pulses generated by the state transition of
the quadrature encoders %

% Tick counter for left motor %
LCNT[].clk =LTP;
LCNTI].clrn= CRESETN;
% Count up if rotating forward %
IF (LDIR.g==0) THEN
LCNT[].d=LCNT[].g+ 1,
% Count down if rotating backwards %
ELSE
LCNT[].d=LCNT[].q- 1;
END IF;

% Tick counter for right motor %
RCNTI[].clk = RTP;
RCNT][].clrn = CRESETN;
% Count up if rotating forward %
IF (RDIR.q ==0) THEN

RCNT[].d = RCNT[].q + 1;
% Count down if rotating backwards %
ELSE

RCNT[].d=RCNTI[].q- 1;
END IF,

31

32

% Counter are latched into speed registers. Latch for the speed registersis derived

from the LTCHclk %

% L eft speed registers %
LSPD[].clk = DFLTCH;
LSPDI[].clrn = RESETn;
LSPD[].d = LCNTI].q;

% Right speed registers %
RSPD[].clk = DFLTCH;
RSPD[].clrn = RESETN;
RSPD[].d = RCNT[].q;

% Table for the Counter reset state machine %

TABLE

CRST, DFLTCH

CO,
CO,
C1,
C1,
C2,
C3,
C3,
END TABLE;

ROXRFRORO

=> CRST, CRESETN;

=> CO,
= C1
=> CO,
= C2
=> C3,
= CO,
=> C3,

% Tablefor the left channel A filter %

TABLE
LCHAF,
LA10,
LA10,
LAZ20,
LA20,
LA11,
LA11,
LA21,
LA21,
END TABLE;

LCHA

POPFRPOPRFRPRORFRO

=>
=>
=>
=>
=>
=>
=>
=>
=>

LCHAF,
LA10,
LAZ20,
LA10,
LA11,
LA21,
LA11,
LA10,
LA11,

PRrORRRR

DFLCHA,;

PRPRPROOOO

% Table for the left channel B filter %

TABLE
LCHBF,
LB10,
LB10,
LB20,
LB20,
LB11,
LB11,
LB21,
LB21,
END TABLE;

LCHB

POPFRPOFLPOPRFRO

=>
=>
=>
=>
=>
=>
=>
=>
=>

LCHBF,
LB10,
LB20,
LB10,
LB11,
LB21,
LB11,
LB10,
LB11,

% Table for the right channel A filter %

TABLE
RCHAF,
RA10,
RA10,
RA?20,
RA20,
RA11,
RA11,
RAZ21,
RAZ21,
END TABLE;

RCHA

POPFRPOPRFRPRORFRO

=>
=>
=>
=>
=>
=>
=>
=>
=>

RCHAF,
RA10,
RA20,
RA10,
RA11,
RAZ21,
RA11,
RA10,
RA11,

% Table for the right channel B filter %

TABLE
RCHBF,
RB10,
RB10,
RB20,
RB20,
RB11,
RB11,
RB21,
RB21,
END TABLE;

RCHB

POPFRPOFLPOPRFRO

=>
=>
=>
=>
=>
=>
=>
=>
=>

RCHBF,
RB10,
RB20,
RB10,
RB11,
RB21,
RB11,
RB10,
RB11,

DFLCHB,;

PRERPROOOO

DFRCHA;

PREPRPROOOO

DFRCHB

PREPRPROOOO

33

% Tablefor the | eft state transition pul se generator %
TABLE
LPG, DFLCHA, DFLCHB => LPG, LTP;

LXX, 0, 0 => LXX, 0O
LXX, 0, 1 => LXnX, 1;
LXX, 1, 0 => LXnX, 1,
LXX, 1, 1 => LXX, G
LXnX, O, 0 => LXX, 1;
LXnX, 0O, 1 => LXnX, O;
LXnX, 1, 0 => LXnX, O;
LXnX, 1, 1 => LXX, 1;
END TABLE;

% Table for the right state transition pul se generator %
TABLE
RPG, DFRCHA, DFRCHB => RPG, RTP,

RXX, 0, 0 = RXX, O;
RXX, 0, 1 => RXnX, 1;
RXX, 1, 0 = RXnX, 1;
RXX, 1, 1 => RXX, O
RXnX, 0, 0 = RXX, 1;
RXnX, 0, 1 => RXnX, O;
RXnX, 1, 0 = RXnX, O;
RXnX, 1, 1 => RXX, 1;
END TABLE;

% Table for the LTCHCclk filter %

TABLE

LTCHF, LTCHclk = LTCHF, DFLTCH;
LTCH10, 0 => LTCH10, 0;
LTCH10, 1 = LTCH20, 0;
LTCH20, 0 => LTCH10, 0;
LTCH20, 1 = LTCH11, 0;
LTCH11, 0 => LTCH21, 1;
LTCH11, 1 = LTCH11, 1;
LTCH21, 0 => LTCH10, 1;
LTCH21, 1 = LTCH11, 1;

END TABLE;

35

%
kkhkkhkkhkkhkkhkkhkhkkhkkkhkhkkkkkkkx
%

% Address decoding and demultiplexing %

% L atch address on rising edge of E clock %

%

kkhkkhkkkkhhkkkhhkkkhhkkhkkhhkhkhhkhkhhkhkhhkhkhhkkhkhkkhkhhkhkhhkhkhhkkhkhhkhkhhkkhkkhhkhkkhhkhkkhhkhkkhkkkhkkk,kkkkx**%

%

demux[15..8].d = PA[7..0];

demux[7..0].d = PB[7..0];

demux[15..0].clk = E;

A[15..1] = demux[15..1].q; % Don't need L SB of address %

% Enable writes when E high and R/W low %

IF(E==VCC) & (R_ W ==GND) THEN
WEn = GND;

ELSE
WENn=VCC;

END IF;

% Enable reads when E high and R/W high %

IF(E==VCC) & (R W==VCC) THEN
OEn = GND;

ELSE
OEn=VCC;

END IF;

% Access external memory when addresses in the range 0x1000 to Ox7fff %

IF (E==VCC) & ((demux[15..0].q >= H"1000") & (demux[15..0].q <= H"7fff")) THEN
CS MEM = VCC;

ELSE
CS MEM = GND;

END IF;

% Access even memory locations when addressis even %

IF (CS_MEM == VCC) & (demux0.q == GND) THEN
CS MEM_EVENN = GND;

ELSE
CS MEM_EVENN = VCC;

END IF;

% Access odd memory locations when LSTRBn islow %

IF (CS_MEM == VCC) & (LSTRBn == GND) THEN
CS MEM_ODDn = GND;

ELSE
CS MEM_ODDn = VCC;

END IF;

% A read from address 0x0400 reads the Left Motor Tick Counter %

% A read from address 0x0402 reads the Right Motor Tick Counter %
% A read from address 0x0404 reads the L eft Motor Speed Register %
% A read from address 0x0406 reads the Right Motor Speed Register %

IF (demux[15..0].g == H"0400") # (demux[15..0].g == H"0401") THEN
% Sign extend left count register to 16 bits %
IF(LDIR.q == 0) THEN
IDB[15..9] = B"0000000";
ELSE
IDB[15..9] =B"1111111";
END IF,
IDB[8..0] = LCNT[8..0].q;
ELSIF (demux[15..0].q == H"0402") # (demux[15..0].q == H"0403") THEN
% Sign extend right count register to 16 bits %
IF(RDIR.q == 0) THEN
IDB[15..9] = B"0000000";
ELSE
IDB[15..9] =B"1111111";
END IF,
IDB[8..0] = RCNT[8..0].q;

ELSIF (demux[15..0].q == H"0404") # (demux[15..0].g == H"0405") THEN
% Sign extend left speed register to 16 bits %
IF(LDIR.g==0) THEN
IDB[15..9] = B"0000000";
ELSE
IDB[15..9] =B"1111111",
END IF;
IDB[8..0] = LSPDI[8..0].q;
ELSIF (demux[15..0].q == H"0406") # (demux[15..0].qg == H"0407") THEN
% Sign extend right speed register to 16 bits %
IF(RDIR.q == 0) THEN
IDB[15..9] = B"0000000";
ELSE
IDB[15..9] =B"1111111";
END IF;
IDB[8..0] = RSPD[8..0].q;
ELSE
IDBJ[15..0] = H"0000";
END IF;

37

% If reading from address 0x0400, 0x0402, 0x0404, or 0x0406, we need to drive the %
% Port A lineswhen E is high %

IF (R W==VCC) & (E ==VCC) &
((demux[15..0].q == H"0400") # (demux[15..0].q == H"402")
(demux(15..0].q == H"404") # (demux[15..0].q == H"406"))
THEN
PA_OE = VCC;
ELSE
PA_OE = GND;
END IF;

% If reading from address 0x0400 - 0x0407, we need to drive the Port B lineswhen E is
high %

IF (R W ==VCC) & (E == VCC) & (LSTRBn == GND))
& ((demux[15..0].q == H"0400") # (demux[15..0].q == H"0401")
(demux[15..0].q == H"402") # (demux[15..0].q == H"403")
(demux[15..0].q == H"404") # (demux[15..0].q == H"405")
(demux[15..0].q == H"406") # (demux[15..0].q == H"407"))
THEN
PB_OE = VCC;
ELSE
PB_OE = GND;
END IF;

% Here'swhere we put the internal data bus values onto Port A %

PA[7] = TRI(IDB[15], PA_OE);
PA[6] = TRI(IDB[14], PA_OE);
PA[5] = TRI(IDB[13], PA_OE);
PA[4] = TRI(IDB[12], PA_OE);
PA[3] = TRI(IDB[11], PA_OE);
PA[2] = TRI(IDB[10], PA_OE);
PA[1] = TRI(IDB[9], PA_OE);
PA[0] = TRI(IDB[8], PA_OE);

% Here'swhere we put the internal data bus values onto Port B %

PB[7] = TRI(IDB[7], PB_OE);
PB[6] = TRI(IDB[6], PB_OE);
PB[5] = TRI(IDB[5], PB_OE);
PB[4] = TRI(IDB[4], PB_OE);
PB[3] = TRI(IDB[3], PB_OE);
PB[2] = TRI(IDB[2], PB_OE);
PB[1] = TRI(IDB[1], PB_OE);
PB[0] = TRI(IDB[0], PB_OE);

% We have to do the following to have pins mapped correctly %
XX.clk =E;

XX.d=VCC;

XX.clrn =!RESETN;

END;

38

39

Appendix C: HC12 Code

[* Thisisthe HC12 header file. It contains definitions of pointersto various registers. */
#ifndef _ HC12 H

#define__ HC12 H 1

#define_BASE 0x0000

#define LCNT (* (int *)(_BASE+0x400))
#define RCNT (* (int *)(_BASE+0x402))
#define LSPD (* (int *)(_BASE+0x404))
#defineRSPD (* (int *)(_BASE+0x406))

#define RTICTL (* (unsigned char *)(_ BASE+0x14))
#define RTIFLG (* (unsigned char *)(_ BASE+0x15))
#define INTCR (* (unsigned char *)(_BASE+0x1e))

#define PWCLK (* (unsigned char *)(_ BASE+0x40))
#define PWPOL (* (unsigned char *)(_ BASE+0x41))
#define PWEN (* (unsigned char *)(_ BASE+0x42))
#define PWSCAL1 (* (unsigned char *)(_ BASE+0x46))
#define PWPERO (* (unsigned char *)(_ BASE+0x4c))
#define PWPER1 (* (unsigned char *)(_ BASE+0x4d))
#define PWPER2 (* (unsigned char *)(_ BASE+0x4e))
#define PWDTYO (* (unsigned char *)(_ BASE+0x50))
#define PWDTY 1 (* (unsigned char *)(_BASE+0x51))
#define PWDTY 2 (* (unsigned char *)(_ BASE+0x52))
#define PWCTL (* (unsigned char *)(_ BASE+0x54))
#define PORTP (* (unsigned char *)(_ BASE+0x56))
#define DDRP (* (unsigned char *)(_ BASE+0x57))

#define ATDCTL2 (* (unsigned char *)(_ BASE+0x62))
#define ATDCTLA4 (* (unsigned char *)(_ BASE+0x64))
#define ATDCTLS5 (* (unsigned char *)(_ BASE+0x65))
#define ADR2H (* (unsigned char *)(_ BASE+0x74))
#define ADR3H (* (unsigned char *)(_ BASE+0x76))
#define ADR4H (* (unsigned char *)(_ BASE+0x78))
#define ADR5H (* (unsigned char *)(_ BASE+0x7a))
#define ADR6H (* (unsigned char *)(_ BASE+0x7c))
#define ADR7H (* (unsigned char *)(_ BASE+0x7€))

#define PACTL (* (unsigned char *)(_BASE+0xa0))
#define PAFLG (* (unsigned char *)(_ BASE+Oxal))
#define PACNT (* (unsigned int *)(_ BASE+0xa2))

#define PORTDLC (* (unsigned char *)(_ BASE+0xfe))
#define DDRDLC (* (unsigned char *)(_BASE+0xff))

#endif

40

[* Thisisthe setup header file. Thisfile contains functions that setup various subsystems

of the robot */

#include <hc12.h>

/* This function performs basic setup of the PWM system */

void PWM _setup()

{

}

[* This function sets up the latch for the digital speed decodersin Altera. The latch

/I Choose 8-bit mode

PWCLK = PWCLK & ~0xC0;

/I Choose |eft-aligned

PWCTL = PWCTL & ~0x08;

/I Choose high during duty cycle polarity
PWPOL = PWPOL | OxOF;

frequency is about 198.4 Hz. */

void LATCH_setup()

{

/I Choose clock mode for channel 2
PWPOL = PWPOL | 0x40;

II'Select N=5and M =2
PWCLK |= 0x05;
PWSCAL1 =2,

/I Select period of 210 and duty of 105
PWPER2 = 209;
PWDTY2 = 104;

PWEN |= 0x04; // Enable PWM Channel 2

[* This function sets up the H-Bridge PWM and direction signals */
void HB_setup()
{

/I Select clock mode 1 for Channels 1 and O

PWPOL = PWPOL & ~0x30;

/I Select N = 4 for Channels 1 and O

PWCLK = (PWCLK & ~0x18) | 0x20;

/I Select period of 200 for Channels 1 and 0
PWPER1 = 199;
PWPERO = 199;

PWEN |= 0x03; //Enable PWM Channels1 & O

// Enable Direction Bits for Output
DDRP |= 0xCO;

/[Initialize the H-bridge duty cyclesto O
PWDTY1=0;
PWDTYO0=0;

}

[* This function sets up the A/D Port. Four distance sensors, two on the left & two
on the right, and two flame sensors plug into the A/D Port. */
void AD_setup()
{
ATDCTL2 = 0x80; //Power up A/D
ATDCTL4 = 0x01; //Select A/D clock
ATDCTL5 = 0x40; //8-channel mode

//Scan continuously on all channels
ATDCTLS5 |= 0x30;

}

[* This function sets up bits 0-2 of Port DLC as inputs. The Whiteline sensor, Frontwall
sensor, and Tone Decoder plug into Port DLC. */
void DLC_setup()

{
DDRDLC &= ~0x07;

}

41

[* Thisisthe functions header file */
#include <hc12.h>

#define forward O
#define backwards 1
#define left 2
#defineright 3

#define Small_Room O
#define Large_ Room 1

signed int desired_speed, |desired _speed, rdesired speed;
signed int desired _dist, desired_orient;

signed int |dty, rdty;
signed int |serr, rserr, curr_orient;

signed int fsum, fdiff;
unsigned char fire = 0, fireout = 0;
unsigned char flame =0, flameh = 0, flamegh = 0;

unsigned char ws =0, wlc = 0, InRoom = 0, room;
unsigned char room_size, room_start;

unsigned int dist_sum;

unsigned char smallest_dist, smallest_turns;

unsigned char hallway nav_complete = 0;
unsigned char leftwall _nav_complete = 0;
unsigned char room_exited = 0;

unsigned int counter;
unsigned char i, cc;
unsigned int desired_ticks, Iticks, rticks;

[* Thisfunction enables the RTI interrupt */

void enableRTI()

{
RTICTL =0x84; /[Enable RTI for 8ms
RTIFLG=0x80; // Clear RTI flag
_asm("cli"); Il Clear | bitin CCR

}

[* Thisfunction disables the RTI interrupt */
void disableRTI()
{
RTICTL =0x00; // Clear RTI Control Register
_asm("sei"); [/ Setl bitin CCR
}

42

[* Thisisadelay function */
void delay(int num)
{

inty = num;

int x;

while(y > 0)

{
// Inner loop delaysfor 1 ms
x = 1333;
while (x > 0)

}
}

[* Thisfunction returnsal if thereisaleft wall and a0 if not */
unsigned char Leftwall()

{
return ((ADR2H > 30) && (ADR3H > 30));

}

[* Thisfunction returnsalif thereisaright wall and a0 if not */
unsigned char Rightwall()

{
return ((ADR6H > 30) && (ADR7H > 30));

}

/* Thisfunction returnsal if thereisafront wall and a0 if not */
unsigned char FrontWall()

{
return ((PORTDLC & 0x02) == 0x02);
}
/* Thisfunction returnsal if thereisawhite surfaceand a0 if not */
unsigned char WhiteSurface()
{
return ((PORTDLC & 0x01) == 0x01);
}

[* Thisfunction returnsal if the tone detector has been triggered and a0 if not */
unsigned char Tone()

{
return ((PORTDLC & 0x04) == 0x00);

}

43

[* Thisfunction returnsal if thereis aflame present and a0 if not */
unsigned char AFlame()

{
return ((ADR4H > 40) || (ADR5H > 40));

}

[* Thisfunction returnsa 1 if the robot is about parallel to aleft wall and a0 if
itisnot */
unsigned char LInRange()
{
unsigned char r;
if(((ADR2H < desired_dist - 10) && (ADR3H < desired_dist - 10))
|| ((ADR2H > desired_dist) & & (ADR3H > desired_dist)))
r=1,
else
r=0;

returnr;

}

[* Thisfunction returnsal if the robot is about paralel to aright wall and a0 if
itisnot */
unsigned char RInRange()
{
unsigned char r;
if(((ADR6H < desired_dist - 10) && (ADR7H < desired_dist - 10))
|| ((ADR6H > desired_dist) && (ADR7H > desired_dist)))
r=1,
else
r=0;

returnr;

}

[* Thisisthe error and exit function. Thisfunction is called when everything hits
thefan. */
void error()
{
/I Set H-bridge duty cyclesto O
PWDTY1=0;
PWDTYO0=0;
// Exit and return to DBug-12
exit(0);
}

[* Thisfunction waits for atone to be detected and then undetected before exiting */
void Wait_for_Tone()

while(Tone()) {} //Wait until tone is detected

delay(200);

while(Tone()) {} //Wait until tone is undetected
}

/* This function counts white lines */
void Count_Whitelines()
{
/l Check for White Surface
if(WhiteSurface())
ws=1;

/I If awhite surface has been seen and now the surface is black, count whiteline
if('WhiteSurface() && ws)
{
wlc++;
ws=0;
}
}

[* This function sets the direction of the motors */
void Set_Direction(unsigned char dir)
{
if(dir == forward)
PORTP = (PORTP & ~0x80) | 0x40;
if (dir == backwards)
PORTP = (PORTP & ~0x40) | 0x80;
if(dir == left)
PORTP |= 0xCO;
if(dir ==right)
PORTP &= ~0xCQ;
}

[* This function sets the duty cycle of the H-bride

PWM signals */
void Set DTY (unsigned char LDTY, unsigned char RDTY)
{

PWDTY1=RDTY;

PWDTYO=LDTY;

}

45

[* This function performs a Hamamatsu scan */
void Ham_Scan()
{
Il Set RTI condition code to 128. Reset RTI counter and pul se accumul ator
cc = 128;
counter = 0;
PACNT =0;

/I Wait until flame has been detected or counter has reached 400.
while(!flameh & & (counter < 400))
{
if(PACNT >=1)
{
flameh = 1;
PORTP |= 0x10;
}

ese
{
flameh = 0O;
PORTP &= ~0x10;
}
}
PACNT =0;
}

/* Thisfunction turns the fan off */

void fan_off()

{
PORTP = PORTP & ~0x20;//Make bit 5 of Port P low
DDRP & = ~0x20; /IDisable bit 5 of Port P

}

/* This function turns the fan on */

void fan_on()

{
DDRP |= 0x20; //[Enable bit 5 of Port P
PORTP |= 0x20; //Make bit 5 of Port P high

}

46

[* This function sets up closed-loop speed control */
void go(signed int speed)
{

desired_speed = speed; // Set desired speed

cc=0; /ISet RTI condition codeto O

Il Set Direction

if(desired_speed >= 0)
Set_Direction(forward);

else
Set_Direction(backwards);

/Il Set initial duty cyclesto the desired speed
Set DTY ((unsigned char)desired_speed, (unsigned char)desired _speed);
}

[* This function sets up closed-loop speed control with left wall following */
void golw(signed int speed, signed char dist, signed char orient)
{
// Only go forward when wall following
if(speed >= 0)
desired_speed = speed,;
ese
desired_speed = -speed;

/I Set desired speed for left and right motors
Idesired_speed = desired speed;
rdesired_speed = desired_speed;

/! Set desired distance and orientation from wall
desired dist = dist;
desired_orient = orient;

cc=1; /I Set RTI condition codeto 1
i=0; /| Reset i

Set_Direction(forward); //Go Forward

Il Set initial duty cyclesto the desired speeds

Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);//Set Duty
Cycle
}

47

[* This function sets up closed-loop speed control with right wall following */
void gorw(signed int speed, signed char dist, signed char orient)

// Only go forward when wall following
if (speed >= 0)

desired _speed = speed,;
else

desired_speed = -speed;

/I Set desired speed for left and right motors
Idesired _speed = desired speed;
rdesired _speed = desired _speed,;

/] Set diesired distance and orientation to wall
desired dist = dist;
desired_orient = orient;

cc=2; /] Set condition code to 2
i=0; // Reseti

Set_Direction(forward); //Go forward

I/ Set initial duty cyclesto the desired speeds
Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired speed);

/[* This sets up closed-loop speed control with left wall following while performing a
hamamatsu scan */
void goscan()

/I Set desired speed to 60
desired_speed = 60;

Idesired _speed = desired speed;
rdesired _speed = desired _speed,;

/I Set desired distance from the wall to 80.
desired dist = 80;

/I Set desired orientation to wall to O.
desired orient = 0;

PACNT = 0; // Reset pulse accumulator
cc=1; /I Set RTI condition codeto O
counter = 0; // Reset RTI counter

Set_Direction(forward); /I Go forward

/Il Set initial duty cycles to the desired speed
Set DTY ((unsigned char)desired_speed, (unsigned char)desired_speed);

/[l Wait until a flame has been detected, a front wall, or the counter has reached 100
while(!FrontWall() && !flamegh & & (counter <= 100))
{
if(PACNT > 0)
flamegh = 1,
}
}

49

Il Thisfunction turnsin place 45 degrees */
void tip45(unsigned int dir)
{

Il Set desired speed to 100

Idesired _speed = 100;

rdesired_speed = 100;

/I Set desired number of motor ticks to 600
desired_ticks = 600;

/I Set direction

Set_Direction(dir);

I/ Set initial duty cyclesto the desired speeds

Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired speed);

if(dir == l€ft)
{
I/ Negate desired left motor speed
Idesired _speed = -Idesired_speed;
rticks=0; // Reset right motor tick counter
cc=3; /I Set RTI condition code to 3

I/l Turn in place |eft by 45 degrees
while(rticks <= desired_ticks)
{
if(rticks> desired_ticks- 1)
break;
}
}

if(dir == right)

{
// Negate desired right motor speed
rdesired_speed = -rdesired speed;
Iticks=0; // Reset left motor tick counter
cc=4; /ISet RTI condition codeto 4

I/l Turn in place right by 45 degrees
while(lticks <= desired_ticks)

if(Iticks > desired_ticks- 1)
break;
}
}

/I Set duty cycles and desired speedsto 0
Set DTY(O, 0);
Idesired _speed = 0;
rdesired _speed = 0;
}

[* Thisfunction turnsin place 90 degrees */
void tip90(unsigned int dir)
{

Il Set desired speeds to 100

Idesired _speed = 100;

rdesired_speed = 100;

/I Set desired number of ticks to 1300
desired_ticks = 1300;

Il Set direction
Set_Direction(dir);
I/ Set initial duty cyclesto the desired speeds

Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired speed);

if(dir == left)
{
// Negate desired left motor speed
Idesired _speed = -Idesired_speed;
rticks = O; // Reset right motor tick counter
cc=3; /I Set RTI condition code to 3

I/l Turn in place left by 90 degrees
while(rticks <= desired_ticks)
{
if(rticks> desired_ticks- 1)
break;
}
}
if(dir ==right)
{
I/ Negate desired right motor speed
rdesired_speed = -rdesired_speed;
Iticks = O; // Reset |eft motor tick counter
cc=4; /I Set RTI condition codeto 4

I/l Turn in place right by 90 degrees
while(lticks <= desired_ticks)

if(Iticks > desired_ticks- 1)
break;
}
}

51

/I Set duty cycles and desired speedsto 0
Set DTY(O, 0);
Idesired _speed = 0;
rdesired _speed = 0;
}

[* Thisfunction turns in place 180 degrees */
void tip180()
{

Il Set desired speeds to 100

Idesired speed = 100;

rdesired_speed = 100;

/I Set desired number of ticks to 3500
desired_ticks = 3500;

Set_Direction(right); // Turn right
/Il Set initial duty cyclesto the desired speeds

Set DTY ((unsigned char)ldesired _speed, (unsigned char)rdesired speed);

// Negate desired right motor speed

rdesired _speed = -rdesired speed;
lticks=0; // Reset left motor tick counter
cc=4; /I Set RTI condition codeto 4

I/l Turn in place right by 180 degrees
while(lticks <= desired_ticks)

if(Iticks > desired_ticks- 1)
break;
}

Il Set duty cycles and desired speedsto O
Set DTY(O, 0);

Idesired _speed = 0;

rdesired _speed = 0;

52

[* This function orients the robot parallel to the left wall */
void orient_left()
{

Il Set desired speeds to 60

Idesired _speed = 60;

rdesired _speed = 60;

Il Set inital duty cycle to desired speeds

Set DTY ((unsigned char)ldesired _speed, (unsigned char)rdesired speed);

if(ADR2H > ADR3H)
{
Set_Direction(right); I/l Turn right
// Negate desired right motor speed
rdesired _speed = -rdesired speed;
cc=4; I/ Set RTI condition code to 4

// Turn right until almost parallel to wall
while(ADR2H > ADR3H + 25);
}

else
{
Set_Direction(left); // Turn left
// Negate diesired |left motor speed
Idesired_speed = -ldesired speed;
cc=3; Il Set RTI condition code to 3

// Turn left until almost parallel to wall
while(ADR3H > ADR2H + 25);

}

Il Set duty cycles and desired speedsto O
Set DTY(O, 0);

Idesired _speed = 0;

rdesired _speed = 0;

53

[* This function orients the robot parallel to the right wall */
void orient_right()

Il Set desired speeds to 60
Idesired _speed = 60;
rdesired_speed = 60;

Il Set initial duty cyclesto desired speeds
Set DTY ((unsigned char)ldesired _speed, (unsigned char)rdesired speed);

if(ADR7H > ADR6H)
{
Set_Direction(right); I/l Turn right
I/ Negate desired right motor speed
rdesired_speed = -rdesired_speed;
cc=4; // Set RTI condition code to 4

// Turn until almost parallel to wall
while(ADR7H > ADRG6H + 25);
}

else
{
Set_Direction(left); // Turn left
I/ Negate desired left motor speed
Idesired _speed = -Idesired_speed;
cc=3; I/ Set RTI condition code to 3

// Turn until almost parallel to wall
while(ADR6H > ADR7H + 25);

}

Il Set duty cycles and desired speedsto O
Set DTY(O, 0);

Idesired_speed = 0;

rdesired_speed = 0;

[* This function scan aroom to seeif robot isin asmall or large room. It also checks if
the robot is at the home circle. */
void Scan_Room()

{

unsigned char c;

[l Initidizations
room_start = 128;
room = 128;
counter = 0;
wlc=0;

/I Check for awhite surface
if'"WhiteSurface())
{
smallest_dist = ADR2H;
smallest_turns=0;

// Orient to nearest wall if oneis present

if((ADR2H >= 80) || (ADR3H >= 80))
orient_left();

if((ADR6H >= 80) || (ADR7H >= 80))
orient_right();

/l Scan to find nearest |eft wall.
for(c=0; c<8; ct+t)
{
Il Make eight left 45 degree turns to find the nearest wall.
tip45(left);
delay(100);
/] Store the smallest distance and number of turns to face robot towards the wall that
/I isthe closest
if(smallest_dist < ADR2H)

smallest_dist = ADR2H,;
smallest_turns=c;
}

}
Set DTY(0,0); // Set duty cyclesto O

// Turn the robot until it is facing the closest |eft wall
for(c = 0; c < smallest_turns; c++)
{
tip45(left);
delay(100);
}

go(30); /I Go towards the nearest wall
while((ADR2H < 80) & & (ADR3H < 60) && (ADR6H < 80) && !FrontWall() & &
IWhiteSurface());

I 1f there is awhite surface, turn around and left wall follow
if(WhiteSurface())
{
tip180(); /[Turn 180 degrees
delay(100);
golw(60, 100, 0); // Left wall Follow
/I Left wall follow until thereisafront wall and turn right 90 degrees
while(!Frontwall())
tip90(right);
delay(100);
// Orient paralel to left wall
orient_left();

}

I 1f left rear sensor sees awall and there is no front wall, turn left 45 degrees
if((ADR3H >=60) && !'FrontWall())

tip45(1 eft);

/I 1f right front sensor seesawall and there is no front wall, turn around
if((ADR6H >= 80) && !'FrontWall())

{
tip180(); /[Turn 180 degrees
delay(100);
Il Orient parallel to left wall
orient_left();

}

I 11 left front sensor sees awall and there is no front wall, orient parallel to left wall
if((ADR2H >= 80) & & !FrontWall())
orient_left();

/I 1f thereisfront wall, turn right 90 degrees
if(Frontwall())
{
tip90(right);
delay(100);
}

counter = 0; // Reset RTI counter
golw(60, 100, 0); // Left wall follow

57

/I Left wall follow until thereis afront wall or counter is 100. Count white lines while
// doing this.
while(!Frontwall() && (counter < 100))

Count_Whitelines();

II'1f thereisafront wall, turn right 90 degrees and then left wall follow
if(Frontwall())
{
tip90(right);
delay(100);
golw(60, 100, 0);
}

/I Continue left wall following until thereis no left wall. Count white line while doing
/I this.

while(Leftwall())

{

Count_Whitelines();

/'l thereis afront wall, turn right 90 degrees, orient robot parallel to left wall, and
/I continue left wall following

if(Frontwall())

{

tip90(right);
delay(100);
golw(60, 100, 0);
delay(200);
}
}

/I After left wall has disappeared, go forward until thereis afront wall.
go(30);

while(!Frontwall());

90o(0);

dist sum=0;

/I 1 no white lines have been counted, scan room to determine its size
if(wlc ==0)

/Il Make eight 45 degree turns, summing up the the values from the distance sensors
for(c=0; c<8; ct+t)
{

tip45(right);

delay(100);

dist_sum = dist_sum + ADR2H + ADR3H + ADR6H + ADR7H;

}
Set DTY(O,0); // Setduty cyclestoO

58

[/l Determine room size
if(dist_sum > 1700)
room_size = Small _Room;
ese
room_size = Large_Room;
}
/I If awhite line has been counted, then robot has started from room 4
ese
{
room_start = 4;
room =4,
}
}

/I'1f awhite surface was detected initially, then robot has started from the home circle
else
{
room = 0;
room_start = 0;
orient_left();
}
}

[* This function exits the room after the room scan and after putting out the flame */
void Exit_Room()
{
/1 fireis not out, then exiting room after performing room scan
if("fireout)
{
tip90(left); // Turn left 90 degrees
delay(100);

// Oreint parallel to right wall
orient_right();
delay(100);

/['If not in room 4, go forward until there is afront wall
if(room_start '=4)
{
I/ Perform final check on the size of room if it is alarge room by checking the value
I/ from the left rear sensor
if((room_size== Large Room) && (ADR3H > 25))
room_size = Small_Room;

// Right wall follow out of the room
gorw(50, 100, 0);
while(!FrontWall() & & Rightwall());

59

//'1f no front wall and no right wall, go straight until there is afront wall
if("Frontwall() & & !'RightwWall())

delay(200);

go(40);

while(! Frontwall());
}
90o(0);

/I 1f thereis no right wall, then robot has started in room 1
if('Rightwall())
{
room start =1,
room = 1,
}
else
{
/I 1f thereis aright wall and the room is small, then robot has started in
// room 3
if(room_size == Small_Room)
{
room_start = 3;
room = 3;
}
/I 1f thereisaright wall and the room islarge, then robot has started in room 4
else
{
room_start = 2;
room = 2,
}
}

I/ Turn left 90 degrees and orient paralel to right wall
tip90(left);
orient_right();

60

/l Exit room after outing flame
else

I/ Procedures for exiting rooms 1 and 2
if(room < 3)
{

// Backup

go(-40);

delay(200);

tip45(right); /l Turn right 45 degrees
delay(100);

/! Go towards awall
go(40);
while((ADR2H < 80) & & (ADR6H < 80) && !FrontWall());

Il If thereisafront wall, turn right 90 degrees and orient parallel to left wall
if(FrontWall())
{
tip90(right);
delay(100);
orient_left();
}

/1 right front sensor sees wall and left front sensor sees no wall and there is no front
// wall, turn robot around and orient parallel to left wall
iIf((ADR6H >= 80) && (ADR2H < 80) && !Frontwall())

orient_right();
tip180();
delay(100);
orient_left();

}

/I 1f left front sensor seeswall and there is no front wall, orient parallel to left wall
if((ADR2H >= 80) & & !FrontWall())
orient_left();

/I Left wall follow
golw(50, 100, 0);
delay(200);

61

/1 1f no left wall, go forward to aleft wall
if('Leftwall())
{

go(40);

while((ADR2H < 80) & & !'FrontWall());

/I 1f thereisfront wall, turn right 90 degrees and orient parallel to left wall
if(Frontwall())
{
tip90(right);
orient_left();
}

I 1f left front sensor seesawall, orient parallel to left wall
if(ADR2H >= 80)
orient_left();
}

/I Left wall follow until thereis no left wall
while(Leftwall())
{

Il 1f thereisafront wall, turn right 90 degrees, oreint parallel to left wall, and
/I continue left wall following
if(Frontwall())
{
tip90(right);
delay(100);
golw(50, 100, 0);
delay(200);
}
}

Il After left wall has disappeared, go straight until thereis afront wall
go(40);

while(!Frontwall());

90o(0);

/I Once afront wall is seen, turn left 90 degrees and orient parallel to right wall
tip90(l eft);

delay(100);

orient_right();

/I Go straight out of room until thereisafront wall
gorw(50, 100, 0);
while(!FrontWall() && Rightwall());

//'1f no front wall and no right wall, go straight until there is afront wall
if("Frontwall() & & !'RightwWall())
{
go(40);
while(!Frontwall());
}
9o(0);

// Turn left 90 degrees and orient paralel to right wall
tip90(left);
orient_right();

}

I/ Procedures for exiting rooms 3 and 4

else

I/ Procedures for exiting room 3
if(room == 3)
{
// Turn 45 degrees and go towards awall
tip45(right);
delay(100);
go(30);

while((ADR2H < 80) && !Frontwall());

/I'1f thereisfront wall, turn right 90 degrees and orient parallel to the left wall
if(Frontwall())

tip90(right);

delay(100);

orient_left();
}

I 1f 1eft fron sensor sees awall, orient parallel to left wall
if(ADR2H >= 80)
orient_left();

62

}

/I Left wall follow until thereis no left wall
golw(40, 100, 0);
while(ADR2H >= 50)

I 1f thereis afront wall, turn right 90 degrees and continue left wall following

if(Frontwall())
{
tip90(right);
delay(100);
golw(40, 100, 0);
delay(200);
}
}

/I After left wall has disappeared, go straight until thereis afront wall
go(40);

while(!Frontwall());

go(0);

/[Turn left 90 degrees and orient parallel to right wall
tip90(left);

delay(100);

orient_right();

/I Go straight out of room until thereisafront wall
gorw(40, 100, 0);
while(!Frontwall());

I/ Turn left 90 degrees and orient paralel to the right wall
tip90(l eft);

delay(100);

orient_right();

Il Procedures for exiting room 4
else

{

Il Turn left 45 degrees and go towards awall
tip45(left);

delay(100);

90(30);

while((ADR6H < 80) & & !'FrontWall());

63

/I 1f thereisafront wall, turn left 90 degrees and orient parallél to right wall
if(Frontwall())

tip90(left);

delay(100);

orient_right();
}

/I 1f right front sensor seesawall, orient parallel to right wall
if(ADR2H >= 80)
orient_right();

/l Right wall follow until there isno right wall
gorw(30, 100, 0);
while(ADR6H >= 50)

I 1f thereisafront wall, turn left 90 degrees and continue right wall following
if(Frontwall())
{
tip90(l eft);
delay(100);
gorw(30, 100, 0);
delay(200);
}
}

// Once right wall has disappeared, go straight until thereis front wall
90o(30);

while(!Frontwall());

90(0);

I/l Turn right 90 degrees and orient parallel to left wall
tip90(right);

delay(100);

orient_left();

/I Go straight out of room until thereisafront wall
90o(30);
while(!Frontwall());

// Turn right 90 degrees and orient parallel to left wall
tip90(right);

delay(100);

orient_left();

[* This function sets up flame follow */
void Flame_Follow()

{

}

Set_Direction(forward); Il Go forward
while(!fire && 'room_exited & & AFlame())

{

}

cc=5; /I Set RTI condition codeto 5

if(Frontwall())

}

Il 1f thereisafront wall and aright wall, turn left 90 degrees and orient parallel to
I right wall
if(Rightwall())
{
tip90(left);
orient_right();
}

/l'If thereisafront wall and aleft wall, turn rightt 90 degrees and orient parallel to
Il left wall
else

{
tip90(right);
orient_left();
}

delay(100);
Set_Direction(forward); // Go forward

65

[* This function extinguishes the flame */
void Flame_Out()

if(fire)

{
/[Turn fan on
fan_on();
delay(500);

Il Set desired speeds to 40
Idesired speed = 40;
rdesired _speed = 40;

/I Set desired ticks to 1000
desired_ticks = 1000;

Set_Direction(right); I/l Turn right
Il Set initial duty cyclesto the desired speeds
Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired speed);

I/ Negate desired right motor speed
rdesired_speed = -rdesired_speed;

Iticks=0; // Set left motor tick counter to O
cc=4; /l Set RTI condition codeto 4

// Turn in place right
while(lticks <= desired_ticks)

if(Iticks > desired_ticks- 1)
break;
}

Il Set desired speeds to 40

Idesired speed = 40;

rdesired _speed = 40;

I/ Set desired number of ticks to 2000
desired_ticks = 2000;

Set_Direction(left); // Turn left
/I Set duty cyclesto desired speeds
Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired speed);

// Negate desired left motor speed

Idesired _speed = -Idesired_speed;

rticks=0; // Reset right motor tick counter
cc=3; //Set RTI condition codeto 3

// Turnin place left
while(rticks <= desired_ticks)

if(rticks> desired_ticks- 1)
break;
}

Il Set desired speeds to 40

Idesired speed = 40;

rdesired _speed = 40;

I/ Set desired number of ticks to 1000
desired_ticks = 1000;

Set_Direction(right); I/l Turn right
/I Set duty cyclesto desired speeds

Set DTY ((unsigned char)ldesired_speed, (unsigned char)rdesired speed);

I/ Negate desired right motor speed
rdesired_speed = -rdesired_speed;
lticks=0; // Reset left motor tick counter
cc=4; /I Set RTI condition codeto 4

// Turn in place right
while(lticks <= desired_ticks)
{
if(Iticks > desired_ticks- 1)
break;
}

Il Set duty cycles and desired speedsto O
Set DTY(O, 0);

Idesired_speed = 0;

rdesired_speed = 0;

/I Turn fan off
fan_off();
delay(300);

67

68

[* The RTI interrupt takes care of six functions based on the following condition codes:

cc = 0 -- Closed-Loop Speed Control
cc = 1 -- Closed-Loop Speed & Left Wall Follow Control
cc = 2 -- Closed-Loop Speed & Right Wall Follow Control
cc =3 -- Turn Left in Place
cc=4-- Turn Right in Place
cc =5 -- Flame Follow
*/
@interrupt void rti_isr()
{
/I Closed-1oop speed control
if(cc==0)
{
/I Calculate speed errors
rserr = desired_speed - RSPD;
Iserr = desired_speed - LSPD;

// Control equation for forward direction
if(desired_speed >=0)
{
rdty = rdty + rserr/4;
Idty = Idty + Iserr/4;
}
/I Control equation for backwards direction
else
{
rdty = rdty - rserr/4;
|dty = Idty - Iserr/4;
}

I/ Keep right motor duty cycle within 0 and 200
if(rdty >=199) rdty = 199;
if(rdty <=0) rdty = 0;

/I Keep left motor duty cycle within 0 and 200
if(Idty >= 199) Idty = 199;
if(ldty <=0) ldty = 0;

/I Set duty cycle
if(desired_speed == 0)
Set DTY(O, 0);
else
Set DTY ((unsigned char)ldty, (unsigned char)rdty);
}

/I Closed-1oop speed & left wall following
if(cc==1)
{

// Calculate speed error

rserr = rdesired_speed - RSPD;

Iserr = Idesired _speed - LSPD;

/I Adjust the left and right duty cycles
rdty = ((9*rdty)/10) + rserr/3;
Idty = ((9*Idty)/10) + Iserr/3;

I/ Keep right motor duty cycle within 0 and 200
if(rdty >=199) rdty = 199;
if(rdty <=19) rdty = 19;

/I Keep left motor duty cycle within 0 and 200
if(Idty >= 199) Idty = 199;
if(Idty <= 19) Idty = 19;

Il Set duty cycles
Set DTY ((unsigned char)ldty, (unsigned char)rdty);

Il When i = 3, make wall following adjustments
if(i ==3)
{

/I Calculate orientation error

curr_orient = ADR3H - ADR2H;

Il Adjust desired speeds to correct orientation
rdesired_speed = desired _speed - (2* (desired_orient - curr_orient))/4;
Idesired _speed = desired_speed + (2* (desired_orient - curr_orient))/4;

/I 1f oriented somewhat parallel, adjust distance
if(LInRange())
{

rdesired _speed = rdesired_speed + (2*(desired_dist - (ADR3H)))/4;
Idesired_speed = |desired_speed - (2* (desired _dist - (ADR3H)))/4;
}

i=0; //Reseti
}
}

69

/I Closed-loop speed and right wall following
if(cc==2)
{

// Calculate speed error

rserr = rdesired_speed - RSPD;

Iserr = Idesired _speed - LSPD;

/I Adjust duty cycles for speed error
rdty = ((9*rdty)/10) + rserr;
Idty = ((9*rdty)/10) + Iserr;

I/ Keep right motor duty cycle within 0 and 200
if(rdty >=199) rdty = 199;
if(rdty <=19) rdty = 19;

/I Keep left motor duty cycle within 0 and 200
if(Idty >= 199) Idty = 199;
if(Idty <= 19) Idty = 19;

Il Set duty cycles
Set DTY ((unsigned char)ldty, (unsigned char)rdty);

Il When i = 3, make wall following adjustments
if(i == 23)
{

/I Calculate orientation error

curr_orient = ADR6H - ADR7H;

Il Adjust desired speeds to correct orientation
rdesired_speed = desired _speed - (2* (desired_orient - curr_orient))/4;
Idesired _speed = desired_speed + (2* (desired_orient - curr_orient))/4;

/I 1f oriented somewhat parallel, adjust distance
if(RInRange())
{

rdesired _speed = rdesired_speed - (3*(desired_dist - (ADR7H)))/8;
Idesired_speed = |desired_speed + (3* (desired_dist - (ADR7H)))/8;
}

i=0;, //Reseti
}
}

70

/I Closed-1oop speed control left turn in place
if(cc==23)

{

}

Il Calculate speed errors
rserr = rdesired_speed - RSPD;
Iserr = Idesired _speed - LSPD;

I/l Adjust duty cyclesto correct speed
rdty = PWDTY1 + rserr;
ldty = PWDTYO - Iserr;

I/ Keep right motor duty cycle within 0 and 200
if(rdty >=199) rdty = 199;
if(rdty <=19) rdty = 19;

/I Keep left motor duty cycle within 0 and 200
if(Idty >= 199) Idty = 199;
if(Idty <= 19) Idty = 19;

Il Set duty cycles
Set DTY ((unsigned char)ldty, (unsigned char)rdty);

/I Count right motor ticks
if(RCNT >=0)
rticks = rticks + RCNT;

71

/I Closed-1oop speed control right turn in place
if(cc == 4)

{

}

// Calculate speed error
rserr = rdesired_speed - RSPD;
Iserr = Idesired _speed - LSPD;

I/l Adjust duty cyclesto correct speed
rdty = PWDTY1 - rserr;
Idty = PWDTYO + |serr;

// Keep right motor duty cycle within 0 and 200
if(rdty >=199) rdty = 199;
if(rdty <=19) rdty = 19;

Il Keep left motor duty cycle within 0 and 200
if(Idty >=199) Idty = 199;
if(Idty <= 19) Idty = 19;

/I Set duty cycle
Set DTY ((unsigned char)ldty, (unsigned char)rdty);

if(LCNT >=0)
[ticks = lticks+ LCNT;

72

/! Flame Follow
if(cc==5)

/I Calculate flame intensity and orientation to flame
fsum = ADR4H + ADR5H,;
fdiff = ADR4H - ADR5H;

/I If left wall and flame is to the left, follow left wall at a distance of 80
if((ADR2H > 80) & & (fdiff > 0))

rdty = 50 + (1*(80 - ADR3H)/8);
Idty = 50 - (1*(80 - ADR3H)/8);
}
/'1f right wall and flame isto the right, follow right wall at a distance of 80
elseif((ADR6H > 80) & & (fdiff < 0))
{
rdty = 50 - (1*(80 - ADR7H)/8);
Idty = 50 + (1*(80 - ADR7H)/8);
}
/I 1f flame and no left or right wall, follow flame
else

rdty = 50 + fdiff;
Idty = 50 - fdiff;
}

Il Keep left and right motor duty cycles within 0 and 200
if (rdty > 199) rdty = 199;

if (Idty > 199) Idty = 199;

if (rdty <0) rdty =0;

if (Idty <0) Idty =0;

Il Set duty cycle
if(fire)

Set DTY(0, 0);
else

Set DTY (ldty, rdty);

/I 1f there is awhite surface and aflame, set fire variable to indicate that it istime to
[/lout the flame
if(WhiteSurface() && (fsum > 200))

fire=1;

73

/I 1T there is awhite surface and no flame, then the robot has exited the room
if(WhiteSurface() && (fsum < 200))
room_exited = 1;

}
i++; /I Increment i
counter++; /I Increment counter

RTIFLG =0x80; // Reset RTI flag

74

75

[* Thisisthe navigations header file. It contains functions used to navigate through
through the maze */

#include <functions.h>

/* Thisisthe room 0 (home circle) navigation code. This code will return the robot to
room 1if thefireisout and it started from room 1, return it to room 3 if the fireis out
and it started fromroom 3, or, otherwise, bring the robot to the center of the maze
facing rooms 1 and 2. */

void room0()

{

/I Go to center of maze
if(room_start '= 1)
{
/I Left wall follow until thereisno left wall
golw(100, 100, 0);
delay(100);
while(Leftwall());
/I Go straight until thereisafront wall
go(80);
while(!Frontwall());

// Turn left 90 degrees, facing towards rooms 1 and 2 if room started from is not room
// 3. Thisisroom 1 position.
if(room_start = 3)
{
tip90(left);
delay(100);
orient_right();
room =1, /Il Setroom=1

}

/I Return to room 3 if fireis out
else

if(fireout)

{
tip90(right);
delay(100);
orient_left();
/I Left wall follow until thereisafront wall
golw(80, 100, 0);
delay(100);
while(!Frontwall());
tip90(right);
delay(100);
orient_left();
// Enter room 3 and stop
golw(80, 100, 0);
while(!WhiteSurface());
delay(500);
Set DTY(O, 0);
disableRTI();
exit(0);

}

}
}

// Return to room 1
else
{
if(fireout)
{
Il Left wall follow into room 1 and stop
golw(80, 100, 0);
delay(500);
while('WhiteSurface());
delay(500);
Set DTY(O, 0);
disableRTI();
exit(0);

77

[* Thisisroom 1 navigation code. It will scan room 2 for aflame while it brings the robot

to room 2 position, which is at the entrance of room 2 facing towards room 1. It will
also return the robot to room 2 if thefireis out and the robot started from room 2. */

void rooml()

{

// Right wall follow until thereisno right wall
gorw(70, 110, 0);

delay(400);

while(Rightwall());

// Hamamatsu scan room 2
if((room_start I=2) && !fireout)
{
goscan(); // Left wall follow hamamatsu scan
/I Go straight until thereisafront wall
go(60);
while(!Frontwall());
delay(50);
/I'1f no flame detected, scan in place
if('flamegh)
{
90o(0);
orient_left();
delay(100);
tip45(right); // Look into room 2
Set DTY(O, 0);
Ham_Scan();
}

/I Determine the existence of aflame
if((flameh == 1) || (flamegh == 1))
flame=1;
else
flame=0;

}

/I 1f robot didn't start from room 2 and there is no flame, turn around
if((room_start I=2) && !flame)

if(!fireout)

{
tip45(right);
tip90(right);

}

else

{
go(40);
while(!Frontwall());
tip180();

}

delay(100);

orient_right();

}

room=2; [/ Setroom=2

// Return to room 2

if((room_start == 2) && fireout)

{
Il Right wall follow until thereisafront wall
gorw(80, 100, 0);
while(!Frontwall());
tip90(right);
delay(100);
orient_left();
/I Left wall follow into room 2 and stop
golw(80, 100, 0);
delay(500);
Set DTY(O, 0);
disableRTI();
exit(0);

}

}

[* Thisisthe room 2 navigation code. It scans room 1 for afire and then goes to either
room 3 or room 4. If the robot started from room 3, this code will take it to room 4.
Otherwise, the robot goesto room 3 */

void room2()

/l Right wall follow until there isno right wall
gorw(40, 100, 0);

delay(350);

while(Rightwall());

/I Return to room 1 if robot started from there and the fire is out
if((room_start == 1) & & fireout)
{
// Right wall follow into room 1 and stop
gorw(50, 100, 0);
delay(1500);
Set DTY(O, 0);
disableRTI();
exit(0);
}

// Hamamatsu scan room 1
if((room_start I= 1) & & !fireout)
{
// Hammamatsu scan while left wall following
goscan();
//'1f no flame detected, scan in place
if('flamegh)
{
orient_left();
delay(50);
tip45(right); // Look into room 1
Set_ DTY (O, 0);
Ham_Scan();
}

/I Determine the existence of flame
if((flameh == 1) || (flamegh == 1))
flame=1,;
else
flame=0;

/I 1f no flame turn left 45 degree to line up with left wall
if(!flame)
tip45(1eft);
}

79

80

if(flame)
{
if(flameh == 1)
90(0);
/I 1f flame was detected during the goscan, left wall follow until thereisafull left wall.
Il Thisis how the robot will know that it lined up at the entrance of room 1
else
{
golw(40, 80, 0);
while(!Leftwall());
delay(300);
}
room=1;
}
/'1f no flame, move on
else
{
golw(80, 100, 0); // Left wall follow
delay(800);

// Go to room 3 position
if(room_start 1= 3)
{
/I Left wall follow until thereis no left wall
while(Leftwall());
/Il Go straight alittle bit and turn left 90 degrees
go(60);
delay(400);
tip90(l eft);
delay(100);
/I Go straight alittle bit
go(40);
delay(400);
/I Left wall follw alittle bit
golw(60, 100, 0);
delay(600);
/l Hamamatsu scan room 3
goscan();
/I Go straight until thereisafront wall
go(60);
while(!Frontwall());

flame = flamegh;

/I 1T no flame turn around and set room = 3
if('flame)
{
tip180();
delay(100);
orient_right();
}
room=3;

}

I/ Go to room 4 position if room start is 3
else
{
/I Left wall follow until thereisno left wall
while(Leftwall());
/I Go straight until thereisaright wall
go(80);
while(!RightWall());

/l Right wall follow until there isno right wall

gorw(80, 100, 0);

delay(400);

while(Rightwall());

/I Go straight until thereisafront wall
go(80);

while(!Frontwall());

/I Face room 4 and set room = 4
tip90(right);

delay(100);

orient_left();

room = 4,

81

[* Thisisthe room 3 navigation code. It wil bring the robot to room 4 if it started from
either room 1 or 2. It will return to room 4 if robot started from room 4 and thefireis
out. If robot started from room 3, this will take the robot to room 1 position. */

void room3()

{

// Right wall follow until thereisno right wall
gorw(40, 100, 0);

delay(400);

gorw(80, 100, 0);

while(Rightwall());

/I Go straight until thereisafront wall

go(60);

while(!Frontwall());

I/ Go to room 4 position if room startis 1 or 2
if(room_start < 3)
{
tip90(l eft);
delay(100);
orient_right();
/l Right wall follow until there isno right wall
gorw(60, 100, 0);
delay(200);
while(Rightwall());
/I Left wall follow until thereisafront wall
golw(60, 100, 0);
while(!Frontwall());
Il Face room 4 and set room = 4
tip90(right);
delay(100);
orient_left();
room = 4,

}

/I Go towards center of maze
ese
{
/I Facerooms 1 and 2
tip90(right);
delay(100);
orient_left();
/I Left wall follow
golw(60, 80, 0);
delay(100);

// Go to room 1 position if room start isnot 4
if(room_start !'=4)

/I Left wall follow until thereisno left wall
while(Leftwall());

/I Go straight until thereisaright wall and set room =1
go(60);

while(!RightWall());

Set_ DTY (O, 0);

room = 1,

}

/IEnter room 4 if fireisout
else

//Left wall follow until thereis no left wall
golw(80, 100, 0);

delay(1000);

while(Leftwall());

Il Go straight until thereisafront wall
go(60);

while(!Frontwall());

// Return to room 4 if fireis out
if(fireout)
{
/I At home circle, face room 4
tip90(l eft);
delay(100);
I/l Right wall follow for alittle bit
gorw(80, 80, 0);
delay(500);
Il Left wall follow into room 4 and stop
golw(80, 100, 0);
delay(500);
while('WhiteSurface());
delay(400);
Set DTY(O, 0);
disableRTI();
exit(0);

83

/I At home circle, turn around and begin left wall follow navigation

else

{
tip180();
delay(100);
orient_left();
golw(80, 100, 0);
/[Hallway navigation is complete
hallway nav_complete =1,

}

}
}
}

[* Thisisthe room 4 navigation code. If starting from room 4, this take the robot to room
1 position. Otherwise, this scans room 4 and then returns to home circle */
void room4()
{
// Drive by room 4 if not started from there
if(room_start !'=4)
{
/I Left wall follow for alittle bit
golw(80, 100, 0);
delay(200);

// Hammamatsu scan room 4 while wall following

while(!flamegh & & 'RightWall() && !fireout)
goscan();

flame = flamegh;

/I 1T no flame, return to home circle
if('flamegh)

/I Left wall follow until thereisafront wall
golw(90, 100, 0);

while(!Frontwall());

tip90(right); I/l Turn right

delay(100);

orient_left();

/I Left wall follow until there is afront wall
golw(80, 100, 0);
delay(200);
while(!Frontwall());
tip90(right); // Turn right
delay(100);
orient_left();
Set DTY(O, 0);
// Robot is at home circle now. Set room =0
room = 0;
if(room_start == 0)
{
// Hallway navigation is compete
hallway nav_complete = 1,
/I Exit if fireisout
if(fireout)
exit(0);
}

/l'If room startis 1, 2, or 3 and fireis not out, the hallway navigation is complete
if(((room_start < 4) && (room_start !=0)) & & !fireout)
hallway nav_complete = 1,
}

}

/I '1f room start is 4, go to room 1 position
else

/I Right wall follow until thereisafront wall
gorw(80, 100, 0);

while(!Frontwall());

tip90(left); // Turn left

delay(100);

orient_right();

// Right wall follow until there isno right wall
gorw(80, 90, 0);

delay(100);

while(Rightwall());

/I Go straight until thereis aleft wall

go(60);

while(!Leftwall());

/I Left wall follow until thereisno left wall
golw(60, 80, 0);

delay(100);

while(Leftwall());

/I Go straight until thereisaright wall and
// setroom=1
go(60);
while(!RightWall());
Set_ DTY (0, 0);
room = 1,
}
}

[* This function performs the hallway navigation to find and extinguish the flame and
return home */

void Hallway Nav()

{

fireout =0; // Initiaize fireout

/I Run the proper room navigation codes until the hallway navigation is complete
while(hallway _nav_complete == 0)

{

if((room == 0) && !flame)
roomO();

if((room==1) && !flame)
rooml();

if((room == 2) && !flame)
room2();

if((room == 3) && !flame)
room3();

if((room == 4) && !flame)
roomd();

/'1f flame has been detected, enter room
if(flame)
{
I/ Procedures for entering rooms 1, 2, and 3 and putting out the flame
if(room = 4)
{
wlc =0;
counter = 0;
tip90(right); // Turn right
delay(100);
/I/'1f roomis2or 3, orient parallel to left wall
if((room == 2) || (room == 3))
orient_left();

87

/I'1f room = 1, go straight until robot has crossed the white line or counter reaches
/1 150
if(room==1)
{

go(40);

while((wlc == 0) && (counter < 150))

Count_Whitelines();

}

counter =0; // Reset RTI counter

/I Left wall follow until robot has crossed a white line or counter reaches 150
golw(40, 100, 0);
while((wlc == 0) & & (counter < 150))
Count_Whitelines();

// Find flame
while('room_exited & & !fire)
{
/I Left wall follow while there is no flame
golw(80, 100, 0);
while(! AFlame())
{
/I 1f thereisafront wall, turn right, orient parallel to left wall, and continue left
// wall following
if(Frontwall())
{
tip90(right);
delay(100);
orient_left();
golw(80, 100, 0);
}

/I If thereisaflame, follow it
Flame_Follow();

}

}

// Blow out the fire
while(fire)
{
go(20);
delay(150);
Flame_Out();
go(0);
fsum = ADR4H + ADR5H;
/I Check if fire still exists
if(fsum < 100)
{
flame=0;
flamegh = 0;
flameh = 0;
fire=0;
fireout = 1;
}
}

// Exit room

if(room_exited)
flame = 0;

else
Exit_Room();

Il Procedures for entering room 4 and putting out the flame
else

{

/I Right wall follow into room 4 and then make a 45 degree right turn
gorw(40, 80, 0);
delay(800);
tip45(right);
Il Go straight until awhite line has been seen or the counter has reached 100
go(60);
counter = 0;
wlc=0;
while((counter < 100) & & (wlc == 0))
Count_Whitelines();

88

89

/I Right wall follow until awhite line has been seen
gorw(40, 100, 0);
while(wlc == 0)

Count_Whitelines();

while('room_exited & & !fire)
{
// Right wall follow while there is no flame
gorw(60, 100, 0);
while(! AFlame())
{
/l'If thereisafront wall, turn left, orient parallel to right wall, and continue right
// wall following
if(Frontwall())

tip90(l eft);

delay(100);

orient_right();

gorw(60, 100, 0);
}

/I 1f thereisaflame, follow it
Flame_Follow();

}

/l Blow out fire until it is out
while(fire)
{
go(20);
delay(150);
Flame_Out();
go(0);
fsum = ADR4H + ADRG5H;
/I Check if fireis out
if (fsum < 100)
{
flame=0;
flamegh = 0;
flameh = 0;
fire=0;
fireout = 1;
}
}

90

/I Exit room
if(room_exited)
flame=0;
else
Exit_Room();
}

}
}
}

[* Thisisthe left wall follow navigation code. This code will left wall follow through the
entire maze, entering every room, to find the candle */
void LWF_Nav()
{
wic =0;
golw(70, 100, 0); // Left wall follow
while(!fire)
{
while(! AFlame())
{
Count_Whitelines();
/I 1f thereisafront wall, turn right, orient parallel to left wall, and continue left wall
// following
if(Frontwall())
{
tip90(right);
delay(100);
orient_left();
golw(70, 100, 0);
}
/' 1f white line counter equals 7 and a white surface has been detected, robot is at the
// home circle. Turn around and left wall follow into room 4
if((wlc ==7) && WhiteSurface())

tip180();
orient_right();
golw(70, 100, 0);
}
/I 1f over 10 whitelines have been counter, give up
if(wlc >= 10)
error();
}
/[1f inaroom and thereis aflame, follow it
if((wlc!'=0) && AFlame())
Flame_Follow();

}

}

room = wlc/2; /I Determine room
/I Blow out fire until it is out
while(fire)
{
go(20);
delay(150);
Flame_Out();
go(0);
fsum = ADR4H + ADRG5H;
/I Check if fireis out
if (fsum < 100)
{
flame=0;
flamegh = 0;
flameh = 0;
fire=0;
fireout = 1;
}

}
Exit_Room();
hallway nav_complete = 0;

91

[* Thisisthe main program file */

#include <setup.h>

#include <navigation.h>

main()

{
INTCR &= ~0x60; // Disable IRQ
PWM _setup(); /] Setup PWM
LATCH_setup(); // Setup latch
HB_setup(); /I Setup H-bridge
AD_setup(); Il Setup A/D ports
DLC_setup(); Il Setup Port DLC
HAM _setup(); /1 Setup hamamatsu
Wait_for_Tone();
delay(250);
enableRTI();
// Scan and exit room
Scan_Room();
if(room_start '= 0)

Exit_Room();

Set DTY(O, 0);
disableRTI();
enableRTI();

/I'1f room start has been determined, begin hallway navigation
if(room_start '= 128)
{
Hallway Nav();
/l'If hallway navigation is complete and the fire is not out, begin left wall following
if(hallway _nav_complete & & !fireout)
{
LWF_Nav();
Hallway Nav();
}
}

/I Left wall follow through maze if room start was not correctly determined
else
LWF_Nav();
}

