
The Robert Paulson Project

Prepared for:
Dr. Stephen Bruder

Dr. Kevin Wedeward

Written by:
Scott Dearie
Kevin Fisher
Brian Rajala

Steven Wasson

May 7, 2001

2

Abstract

The following report will show the design and concepts used in the creation of an

autonomous robot that could compete in the Trinity College Home Fire-Fighting Robot

Contest. The rules of this contest stipulate that the robot must navigate through a maze,

find a candle, extinguish the flame and then return to its original location. The robot was

required to sense its surroundings, and have closed loop motor control. We were able to

accomplish this task with several weeks left in the term. With the extra time available we

implemented tone start and arbitrary starting point. They were not required but this

greatly reduced our score at the Trinity competition.

3

Table of Contents

Abstract ..2

List of Figures and Tables... 4

Introduction..5
Hardware

Chassis ...6
Sensors

Tone Decoder...8
White Line Sensor..9
Front Wall Sensor ..10
Side Wall Sensors ..11
Flame Sensors ..12
Hamamatsu UV Tron & Driving Circuit13

Fan Control ..13
H-bridges

Allegro 2998 ..15
National LMD18200T ...15

Motor Selection..16
LED Board ...16

Software
Digital Position and Speed Decoders...17
HC12 Connections...19
Code Structure ...19
Closed-loop Control...20
Arbitrary Starting Point ...21
Maze Navigation..21
Extinguishing Flame and Returning Home..23

Production Cost..23
Reproduction Cost ...24
High Power Budget..25
Low Power Budget ..26
Conclusion ...27
Appendix A: Motor Selection Criteria...28
Appendix B: Altera code ...29
Appendix C: HC12 code..39

4

List of Figures and Tables

Figures
1: Bottom of Plate 1 ...7
2: Top of Plate 1...8
3: Tone Decoder Circuit...9
4: White Line Sensor ...10
5: Front Wall Sensor ..11
6: GP2D12 Characteristics...12
7: Flame Sensor..13
8: Fan Control System ...14
9: Allegro 2998 system with opto-isolation...15
10: Digital Position and Speed Decoders...16
11: High Power Budget..26
12: Low Power Budget ..26

Tables
1: Connections to the HC12...19
2: Development Budget ...24
3: Reproduction Budget...25

5

Introduction

Scope

This group was tasked to design and build a robot that could navigate a maze,

detect a flame, and extinguish a flame while adhering to the following design criteria:

1. Fully Autonomous

2. Optical isolation between high-power and low-power electronics

3. Demonstrate motor speed and/or position measurements through Altera PLD

4. Closed-loop speed and wall-following control

5. Main program must be in 'C'

6. Neat and clean final design with good connectors

7. Spend no more than $300

We added the following criteria to make our robot more competitive at the international

competition:

1. Start off a 3.5KHz tone

2. Start in any room of the maze

3. Return to the room that it started in

Purpose

By reading this paper it will be possible for a person with the following

prerequisites to be able to reconstruct our robot and emulate our results.

1. In-depth knowledge of the MC68HC12 micro-controller.

2. Analog and digital circuit design.

3. Principles of linear time-invariant systems.

4. Proficiency in C programming

6

Hardware design

The hardware functioned as the body, eyes, ears, and mouth of our robot. It

allowed our robot to have a very high level of awareness of its surroundings. It was able

to see the walls of the maze, look for fire using two methods, and listen for a tone that

indicated that it should start. Our hardware consisted of the following components:

Chassis: this is the body of the robot that all other items are attached to.

Tone sensor: this allowed the robot to listen for a tone:

Wall sensors: these allowed the robot to measure the size of rooms and follow

walls

Fire sensors: these two devices allowed the robot to see a fire by detecting UV

light and visible light.

LED Board: this device allowed our robot to tell us what signals it was receiving

from its other components.

Chassis

No matter how good our subsystems were they would be useless without a good

chassis to mount them on. We discovered this very early on when we were having

problems getting caught on the walls of the maze. The chassis of our robot was designed

to fit within the following criteria. It should be able to carry all of our necessary sensors

on one plate, have a symmetrical layout, isolate high and low power sensors, be

lightweight, and have a low center of gravity with its weight centered more to the rear.

Of all these requirements, the toughest to meet was to have a robot with a low

center of gravity and still have most of its weight in the rear. To achieve this we mounted

our high power supply in the rear of the robot with the micro-controller above it. This

ensured that our robot would not tip forward when it had to make a sudden stop. From

this basic design we then placed the rest of our sensors on the robot chassis.

On the bottom of the plate we placed the white line sensor at the front followed by

the H-bridge. At the middle of the robot we placed the motors. This ensured that the

7

robot would still have a symmetrical design. The top plate consisted of the wall and fire

sensors. This design allowed us to isolate the high and low power sensors as much as

possible; the white line sensor being the exception. The wall and fire sensors are light in

comparison to the power supply, so the placement of these sensors had little effect on the

distribution of weight.

In order to mount the fan we added a second plate over the HC-12. We also used

this second plate to mount our low power supply, tone decoder, fan relay, and LEDs.

This plate did throw off the center of gravity some, but not so much that we had to

change our design.

After we had a functional design we made our final plate. Having a preliminary

plate was very useful because we were able to experiment with sensor placement without

harming the final look of the robot. This approach also allowed us to start working with

the robot without spending time making a perfectly round plate and to note any defects in

our design. The major flaw in our design was that our wheels were on the outside of our

chassis. The final plate was constructed from 1/8” Plexiglas. The final plate design is

shown below. Note the new placement of the motors.

Figure 1: Bottom of Plate 1

White Line Detector

H- Bridges

Motors

Opto-isolation
Power supply

8

Figure 2: Top of Plate 1

Sensors

All of the following sensors were integrated with the HC-12 to operate as one unit

that allowed our robot to sense and react to its environment.

Tone Decoder

The tone decoder will start the robot when the microphone picks up a “smoke

alarm” going off. We used a LM567 PLL chip by National Semiconductor. The circuit is

active low. When a signal of 3.5 kHz goes into the microphone the logic drops from 5V

to 0V. There is a 10k pot on pin 5, which will allow us to adjust the frequency between 2

to 4 kHz. The pot was necessary because the tone generator gets weaker with extended

use. C3 and the center frequency determine the bandwidth. C2 and R2 are used to get

the center frequency. The equation for center frequency is fo=1/(1.1*R2*C2). The

equation for bandwidth is BW=1070sqrt(vi/fo*C3). Where vi is the input voltage which

is less than 200mv. We gave it a 10% bandwidth to enable the tone to go low only on a

signal near the desired frequency. The tone must be about an inch away for it to activate.

This was useful because it prevented other group’s tones from starting our robot.

Overall the device was useful because it made testing the robot easier and gave us a time

reduction in the competitions.

Wall Sensor

Heat Sensors

Hamamatsu

HC-12

Plate 2

9

Figure 3: Tone Decoder Circuit

White Line Sensor

While traveling the maze, the robot will encounter white lines at two specific

times; when entering or exiting a room and when it is near the candle. In order to

observe these lines we chose to look for the transition from dark to light. To do this we

used the fact that IR light is reflected by a white surface while it is absorbed by a black

surface.

We purchased an IR emitter/detector pair from the local Radio Shack to generate

and detect the reflected light. The emitter diode was fabricated to only generate a

specific frequency of light. Also the detector was designed to only detect the frequency

that the diode was emitting. This made it so that the slightest change in frequency would

not be detected. This was useful because if the light was reflected back at an angle (as if

from a drop of wax) it would not be detected.

The total white line system consisted of the IR emitter/detector matched pair, a

Schmitt Trigger, a set of biasing resistors, a 10K pot, and an ambient light shield. The

transistor was biased to 5V when it detected IR light this signal was then fed into a

10

Schmitt Trigger. The Schmitt Trigger was necessary to filter the biased signal into a

clean digital signal. The complete schematic can be found below. This sensor worked

better than expected and was able to operate in complete darkness and direct light. It was

adjustable to detect a white line from 1/8 of an inch to 6 inches off the maze floor.

Figure 4: White Line Sensor
Front Wall Sensor

To conserve analog-to-digital ports on the HC12 microcontroller, we decided to

digitize our front wall sensor to output a logic “1” or logic “0.” With our maze

navigation strategy, we did not need to know how far away a wall was in front of us, only

if there was a wall in front of us. This data could be sent to the HC12 through a single

bit, as opposed to a full eight-bit port. The circuit that we came up with to digitize the

front wall sensor’s signal uses a comparator and a potentiometer to make the threshold

distance adjustable.

Digitizing the front wall sensor proved to be extremely advantageous when we

later decided to incorporate two analog right wall sensors; thus using up all our available

analog-to-digital ports.

11

Figure 5: Front Wall Sensor Circuit

Side Wall Sensors

Our robot uses GP2D12 IR sensors to measure its distance from a wall. These

sensors are accurate from 9cm to 80cm. This was ideal for our environment because the

distances that our robot measured in the hallways of the maze ranged from 12cm to

24cm.

These sensors emit a voltage that is proportional to the distance that the robot is

from the wall. The closer the robot is to a wall the higher the voltage. This voltage was

then sent to one of the onboard A/D converters and changed into a hexadecimal value.

The data sheet for these sensors state that they are accurate starting at 9cm, however we

found that the sensors we used were accurate from 11cm as in shown by Figure 6. Even

though this is alarming it did not affect our robot because in the worst-case scenario our

sensors were 12cm from the wall. Even though the distance from the wall and the

voltage are proportional they are not linear. While wall following, however, the portion

of the curve that we were operating on was fairly linear. This can be seen on Figure 6.

12

Figure 6: Characteristic of the GP2D12

Flame Sensors

For short-range fire detection we decided to use two PN168 phototransistors. In

normal lighting conditions the PN168’s would saturate so they were filtered with tinted

Plexiglas. The Plexiglas also served as housing for the sensors. The sides were covered

with electrical tape to block out the ambient light. Each PN168 had a 10k pot to adjust

the value of the emitter voltage. This allowed us to adjust the sensitivity. When the

output for both PN168s were the same the flame was lined up with the fan. If the output

was higher for one PN168, the robot would move in that direction until both values were

the same. When the robot noticed a white line and the PN168 output values were in the

correct range the fan would turn on.

GP2D12 Voltage vs. Distance

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

Distance

V
o

lta
g

e

13

Figure 7: Fire Sensor

Hamamatsu UV Tron & Driving Circuit

From the beginning of our design phase, we chose to utilize the R2868 UV Tron

flame sensor from the Hamamatsu Corporation. This sensor can detect a lighter-sized

flame at distances greater than five meters. Hamamatsu also sells three types of driving

circuit boards (C3704) for use with their R2868 sensor. The difference between these

three boards is the supply voltage requirements. We chose to use the C3704-02 driving

circuit board because it requires 5v DC to operate – the same as all of our low power

circuitry.

The C3704 driving circuit board outputs a 1ms wide pulse if a flame is detected.

The detection sensitivity of the circuitry is adjustable on the board itself via a jumper. In

using the UV Tron assembly, we had the HC-12 microcontroller look for any pulses from

the C3704 driving circuit board within a two-second interval. This two-second interval

required us to stop the robot at the entrance to a room in some instances.

Fan Control

The fan control system is comprised of three main components: the fan, a relay,

and the fan power supply. The main component of this system is the relay that is used to

turn on and off the fan. Initially, we planned on using an Antex solid-state relay that was

14

opto-isolated. However, the fan assembly that we used drew too much current and fused

several relays closed before we tracked down the problem.

The specifications for the DC motor that we used stated that it would only draw a

maximum of 2 amps continuous. However when we attached our blade to the motor it

drew 4 amps continuous. In order to correct this we had to fabricate our own relay. The

key component that was used in this relay was a MJ2955 power transistor. We chose this

transistor because it was able to handle 15 amps and 150 watts continuous.

Across this transistor we had a maximum of 17 V at 6 amps. This calculates to

102 watts dissipated well within the given specifications. The complete relay was

constructed of 3 transistors and a couple of resistors. The one disadvantage to this design

is that we had to connect the high and low power grounds. By doing this, our robots high

and low power systems were no longer isolated. We were able to find an isolated relay

that met our requirements but did not have the funds or the time to implement this. The

complete fan control system is shown below. Note that the system is active high, when

Port P5 sends a 5V signal the fan will turn on.

Figure 8: Fan Control System

15

H Bridges

Allegro 2998

Coming up with our initial design, we chose to use the Allegro 2998 H-Bridge

largely because of its cost-effectiveness. With one $7 part, we could control both of our

motors. The Allegro 2998 could provide 3A peak current and 2A continuous. Our

Maxon 6W green-body motors required a start-up current of less than 2A. This was well

within the specifications of the Allegro 2998.

Due to problems that arose with the Maxon 6W green-body motors we had to go

with the Maxon 11W motors. These 11W motors had a start-up current of 3.25A – more

current than the Allegro 2998 could handle. This problem arose one week before the

Trinity College Fire Fighting Home Robot contest was to take place. To resolve this

major issue before the international competition, we were forced to borrow an H-Bridge

PCB board from Dr. Kevin Wedeward that used the National LMD18200T H-Bridge.

Figure 9: Allegro 2998 H-bridge system with opto-isolation

National LMD18200T

As mentioned previously, we had to use the National LMD18200T H-Bridge

chips in our final robot design. The National chips could only control one motor per chip

16

(as opposed to two motors per chip with the Allegro), so we required the use of two of

the National chips. The LMD18200Ts can handle a peak current of 6A and a continuous

current of 3A. This limitation was more than enough for the Maxon 11W motors that we

ended up using.

Motor Selection

At the start of the semester we analyzed all of the available motors with respect to

the torque, start up current, continuous current, encoder design, and speed. This analysis

can be found in Appendix A. After this analysis we concluded that the motor that suited

our needs the best was the Maxon 6-watt design. It had a quadrature encoder, a 14:1

gearhead ratio, and a very low startup and continuous current.

As the semester progressed we had to switch motors due to circumstances beyond

our control. One of the motors would short and cause our h-bridge to blow. We were

persuaded to switch to the Maxon 11-watt motor due to supply issues. When we

integrated this motor into the robot it performed better than our original choice. During

the application of this motor we discovered that it had a better response than the 6-watt

motors. The turn in place routines were more accurate as well as the wall following.

These motors were shorter and thicker than the Maxon 6-watt motors. If we used this

motor to begin with our chassis would be smaller. The one draw back to these motors is

that our original wheels did not fit the axle. As a consequence of this we had nearly no

ground clearance.

LED Board

For the main purpose of testing, we designed a board of LEDs that would light if

certain subsystems activated – white line sensor, front wall sensor, and tone decoder. We

17

also used two lights as power indicators. We also had places wired up for the

Hamamatsu sensor and one miscellaneous component, but these were never used.

The LED board proved very useful. We could not tell visually if our high power

switch was open or closed without an LED indicator. Having systems wired to LEDs

also expedited the calibration process. For example, we could calibrate the tone decoder

by sounding the buzzer and turning a potentiometer until the LED reserved for the tone

decoder system lit.

There was one minor problem with the LED board. With the low power indicator

connected to the LED board, the low power battery drained at a much faster rate. We

resolved this issue by only connecting the low power indicator and systems to the LED

board when doing calibration testing. This was not as much of an issue with the high

power indicator because our high power batteries had a much greater charge capacity.

The high power indicator was also the most useful of the LEDs when running the robot in

the maze because it was the only way we could tell if the motors were getting power.

Software

The following describes the software developed for this project. Software

includes all devices implemented in Altera and the C program for the HC12.

Digital Position and Speed Decoders

We implemented quadrature position and speed decoders into our existing Altera

memory expansion board designed in EE 308. The encoder channels were inputted into

our Altera chip. A state machine was created to generate a pulse for every state transition

of the encoder channels for each motor. Then, 9-bit counters counted these pulses.

Simple D flip-flops were used to determine and store the direction of rotation of the

18

motors. The counters were configured so that if the motors rotated forward, they counted

up. Otherwise, they counted down.

The value from the counters is latched into speed registers. The latch signal for

this comes from Port P2 of the HC12. This makes it where the latch frequency can be

adjusted in software via the HC12. The counters and speed registers are then sign

extended to 16-bits and memory mapped into our memory expansion. The left and right

motor tick counters are mapped to addresses 0x0400 and 0x0402. The left and right

motor speed registers are mapped to address 0x0404 and 0x0406.

Figure 10 on the next page is a block diagram of the digital position and speed decoders

and their interface with the HC12. Appendix B contains the Altera code used to

implement this.

Figure 10: Block diagram of the digital position and speed decoders and the interface
between them and the HC12.

19

HC12 Connections

The table below shows what HC12 resources are being used and where all the

devices described earlier connect. It first lists the analog input devices, then the digital

input devices, and finally the digital output signals needed by various other devices.

Table 1: Connections to the HC12

Code Structure

The C code for this project is divided up into four header files and the main C

program file. This first header file is named hc12.h and it contains definitions of pointers

to various HC12 registers used in this project. The second header file is setup.h which

contains functions used to setup various ports on the HC12 to interface with all the

devices. The third header file is functions.h. This header file contains functions used to

detect the robot’s environment, move through the maze, and find and extinguish the

flame. The fourth and final header file is navigations.h which contains special functions

for navigating through the maze to find the fire, extinguish it, and return to the robot’s

starting place. The main C program file includes these header files and uses their

Device Port I/O
Left Front Sensor Port AD2 Input
Left Rear Sensor Port AD3 Input

Left Infrared Sensor Port AD4 Input
Right Infrared Sensor Port AD5 Input
Right Front Sensor Port AD6 Input
Right Rear Sensor Port AD7 Input
White Line Sensor Port DLC0 Input
Front Wall Sensor Port DLC1 Input

Tone Decoder Port DLC2 Input
Hamamatsu UV Sensor Port T7 Input
Left Motor PWM Signal Port P0 Output

Right Motor PWM Signal Port P1 Output
Speed Decoder Latch Signal Port P2 Output

Fan Relay Signal Port P5 Output
Left Motor Direction Signal Port P6 Output

Right Motor Direction Signal Port P7 Output

20

functions to carry out the robot’s mission of extinguishing the flame. These files are

located in Appendix C.

Closed-loop Control

To effectively and efficiently navigate through the maze, we implemented closed-

loop control. Four basic functions were implemented: closed-loop speed control to go

straight at a desired speed, closed-loop speed control with wall following to go parallel to

a wall at a desired speed, turn in place for a desired angle, and flame follow. All of these

functions were implemented in a Real Time Interrupt service routine that was executed

every 8.192 ms.

For closed-loop speed control, the error between the desired speed and actual

speed is added to the present duty cycle. After this is done three times, the desired speeds

of the motors are adjusted to correct the robot’s orientation to the wall. When the robot is

parallel to the wall, the desired speeds are adjusted to correct for the robot’s distance to

the wall.

Closed-loop speed control is also necessary for turning in place. It ensures that

both motors are turning at the same speed in opposite directions. To turn in place for a

specific angle, the position decoders are used. The robot turns in place until the number

of motor ticks counted by the position decoders reaches a set number for a desired

angular rotation.

The final closed-loop control implemented is flame following. This directs the

robot to the flame. It does so by adjusting the duty cycles to the motors to correct the

robot’s orientation to the flame, line it up with the flame, and drive towards the flame.

The two PN168 flame sensors determine the orientation of the robot to the flame. If the

outputs of the two sensors are equal, then the robot is perfectly lined up with the flame.

Otherwise, the flame is off to one of the sides of the robot.

21

Arbitrary Starting Point

In addition to starting from the home circle, we designed our robot to be capable

of starting from any position within any room of the maze. This is done by first

determining if the robot is at the home circle by checking if there is a white surface. If

there is a white surface, meaning that the robot is on the home circle, the robot will orient

itself parallel to the nearest left wall and begin navigating the maze. This means that the

robot can start at the home circle at any orientation.

If the robot is in a room, however, it scans the room to find the nearest left wall.

Then, it drives towards the nearest left wall that it detected. Next, it will left wall follow

through the room until there is no left wall, which occurs at the entrance of the room. It

then drives forward until it reaches a front wall. If the robot has crossed a white line

while left wall following, then the robot has started from room four and has exited it.

If the robot is in either room one, two, or three, it scans the room from the

entrance to determine its size. Then it exits the room. When it reaches a front wall, it

checks if there is a right wall. If there is no right wall and the room is large, the robot has

started from room 1. If there is a right wall and the room is large, the robot has started

from room 2. If there is a right wall and the room is small, the robot has started from

room 3. Finally, when the robot is out of the room facing the wall opposite of the room, it

makes a 90 degree left turn in place and begins maze navigation.

Maze Navigation

To successfully locate a flame within the maze, our robot must have its behavior

pre-programmed. With the limited memory and timeframe, we designed the robot’s

behavior with simplicity and ease of modification in mind. This led to an extremely

modular final set of instructions. Benefits of the modular design included limiting the

redundancy of code and easily being able to correct unacceptable behavior. If we wanted

22

the robot to perform the same actions in many parts of the maze, we could call a single

function multiple times. If we discovered problems with the robot’s behavior in a

specific part of the maze, we could easily correct the error by altering the function written

for that part of the maze.

An added bonus of a modular approach was the ease of integrating arbitrary

starting point capability. Once the robot discovered its starting position and entered into

the hallways of the maze, we could then have our robot run the modular functions in a

certain order to successfully search the entire maze for a flame.

No matter where the robot started from, the rooms were searched in the same

general order each time. The hierarchy is as follows: room 2, room 1, room 3, and finally

room 4. The reasoning behind this order was that the entrances to rooms 2 and 1 are

fairly close together, so we could quickly scan those two rooms and have searched half of

the maze. We searched room 2 before room 1 because our long-range Hamamatsu fire

sensor was mounted to look to the right hand side of the robot. The way the rooms are

configured makes it easy to search room 2 and then search room 1 on the way back.

Room 4 was our last priority in all cases because the entrance was far away from any of

the other rooms. One benefit of using the arbitrary starting point mode was that we only

had to search three rooms because the flame could not be placed in the room of origin.

The only problem that we had to deal with in our maze navigation was the length of time

it took the Hamamatsu fire sensor to scan a room. To scan the larger rooms (1 and 2)

with complete accuracy, our robot had to pause for a second or two at the entrances to be

sure there was not a flame present. In most cases this added to our total run time, but it

was unavoidable with the nature of the Hamamatsu fire sensor.

23

Extinguishing Flame and Returning Home

Once a flame has been detected by the Hamamatsu, the robot enters the room in

which the flame was detected and begins flame following. The flame follow procedure

directs the robot towards the flame without hitting a wall. Once a white surface has been

detected and our flame sensors verify the presence of the flame, the fan is turned on and

the robot makes a 60-degree sweep to extinguish the flame. Once the flame is

extinguished, the robot turns around, exits room, and resumes its maze navigation to

return to its starting point. Once the robot has returned to its home, the code is exited.

Production Cost

At the onset of the semester each group was allocated $300 to use in the

construction of their robot. We kept a very detailed list of expenditures and we were

fairly conscious of this ceiling throughout the semester. Due to the problems with the

Maxon 6W green-body motors it was unavoidable that we would go over-budget. We

spent much time, effort, and, as one can see from the table, $70 on Allegro 2998 H-

Bridge chips in discovering the origin of the problem. In changing to the Maxon 11W

motors, we needed to purchase two National LMD18200T H-Bridge chips and an H-

Bridge board (listed singularly as “H-Bridge Board” in the table) at $30. Combined,

these unavoidable costs account for all but $3.95 (3.8 percent) of the difference.

24

Item Description price/ea quantity cost

Maxon 11-Watt motor: $50.00 2 $100.00
H-Bridge (Allegro)UDN2998W $7.00 10 $70.00
IR distance sensors:0-80cm: GP2D12: $10.00 4 $40.00
Hamamatsu R2868 UVTron $35.52 1 $35.52
Antex solid-state opto-isolated2.5A DC relays: $5.00 5 $25.00
Hamamatsu C3704-02 Driving Circuit $22.20 1 $22.20
Rechargable 7.2V NiCad pack: $10.00 1 $10.00
Caster wheel assembly $10.00 1 $10.00
Schmitt trigger optoisolators $1.50 6 $9.00
4-pin audio locking conn. female: $1.50 6 $9.00
IR distance sensors:0-30cm: GP2D120: $8.00 1 $8.00
crimp contacts: (i.e. pins for above) $0.10 80 $8.00
wheels (pair) $6.68 1 $6.68
Wire-wrap DIP socket2x8-pin: $1.50 4 $6.00
Terminal housing (with pins) 4-pin (pair): $1.25 4 $5.00
Terminal housing (with pins) 6-pin (pair): $2.50 2 $5.00
1.5” rubber wheels: $2.50 2 $5.00
Boxed headers2X5-pin (male) $1.00 3 $3.00
Perf-board 2.25”X1.8”: $1.25 2 $2.50
Project enclosure: Small $2.00 1 $2.00
Perf-board 1.5”X1.75”: $1.00 2 $2.00
Fuse holder (GMA fuses): $1.00 2 $2.00
4-pin audio locking conn. male-straight: $0.50 4 $2.00
4-pin audio locking conn. male-right-ang.: $1.00 2 $2.00
GMA fuses(1,2,4,6A): $0.20 8 $1.60
Terminal housing (with pins) 2-pin (pair): $0.75 2 $1.50
Electret mic (with-leads): $1.50 1 $1.50
10k Ohm multi-turn pot: $1.50 1 $1.50
Wire-wrap DIP socket 2x7-pin: $1.25 1 $1.25
3/16” shrink tubing (price per inch) $0.10 12 $1.20
3/32” shrink tubing (price per inch) $0.10 12 $1.20
Tone decoder: NE567 $1.00 1 $1.00
Ribbon Cable per ft. $0.50 2 $1.00
Plexiglass $1.00 1 $1.00
Misc. spacers/standoffs 4-40 spacers: $0.10 8 $0.80
Misc. switches: $0.50 1 $0.50

GRAND TOTAL $403.95
Table 2: The development budget for this project

Reproduction Cost

While we were astonished at exactly how costly our robot was to design, we were

curious as to how much it would cost to reproduce the robot. In compiling this second

price list, we assumed the same cost per component as the electrical engineering

department was charging us. In some cases, these prices differ greatly from the retail

25

value of the components. For the purposes of this theoretical reproduction cost, we also

included the prices of items that were donated to us.

Table 3: The reproduction budget for this project

High Power Budget

On the high power side of our robot, we were using 16 watts in normal operation

– disregarding the fan. At 14.4 volts, the high power systems drew 1.1 amps. Our high

power battery could carry a charge of 3.6 amp hours of charge. With these figures, our

robot could theoretically run for about 3 hours and 15 minutes. Our high power battery

consisted of two 7.2 volt Radio Shack remote control car batteries connected in series.

Item Description price/ea quantity cost
Maxon 6-Watt 22mm motors (green body): $50.00 2 $100.00
IR distance sensors:0-80cm: GP2D12: $10.00 4 $40.00
Hamamatsu R2868 UVTron $35.52 1 $35.52
Terminal housing (with pins) 4-pin (pair): $1.25 27 $33.75
Hamamatsu C3704-02 Driving Circuit $22.20 1 $22.20
Rechargable 7.2V NiCad pack: $10.00 2 $20.00
Caster wheel assembly $10.00 1 $10.00
IR distance sensors:0-30cm: GP2D120: $8.00 1 $8.00
H-Bridge (Allegro)UDN2998W $7.00 1 $7.00
Schmitt trigger optoisolators $1.50 4 $6.00
Antex solid-state opto-isolated2.5A DC relays: $5.00 1 $5.00
1.5” rubber wheels: $2.50 2 $5.00
Misc. spacers/standoffs 8-32 spacers: $0.10 35 $3.50
5V regulators: 7805 $0.75 3 $2.25
Fuse holder (GMA fuses): $1.00 2 $2.00
3.4kHz 9V buzzer: $1.50 1 $1.50
Electret mic (with-leads): $1.50 1 $1.50
Reflective IR emitter/detector pair: $1.50 1 $1.50
1-turn pots10k Ohm $0.50 3 $1.50
Ribbon Cable per ft. $0.50 3 $1.50
3/16” shrink tubing (price per inch) $0.10 12 $1.20
3/32” shrink tubing (price per inch) $0.10 12 $1.20
Tone decoder: NE567 $1.00 1 $1.00
Plexiglass $1.00 1 $1.00
Misc. switches: $0.50 1 $0.50

GRAND TOTAL $312.62

26

Figure 11: High Power Budget

Low Power Budget

On the low power side of our robot, we were using 3.65 watts in normal

operation. At 7.2 volts, the high power systems drew 0.5 amps. Our low power battery

could carry a charge of approximately 1.75 amp hours of charge. With these figures, our

robot could theoretically run for about 3 hours and 30 minutes. Our low power battery

was a Korean cellular phone battery donated by Dr. George Cunningham.

Figure 12: Low Power Budget

14.4v
Battery

H-
Bridge

H-
Bridge

Motor

Motor

6

6

2

2

FanRelay

30W

9v
Battery

5v
Regulator

Hamamatsu
UV Tron

GP2D120
Wall Sensors

White Line
Sensor

Encoders

HC-12

Fire Sensors

0.5w

0.15w

0.5w

0.1w

0.2w

0.2w

2w

27

Conclusion

This project was a great success. We were able to implement all the required

design characteristics and all of our personal goals. Our robot placed 7th at the Trinity

Home Fire Fighting Robot Competition and 2nd at the local competition.

If we had the opportunity to develop a 3rd stage of this design we would

implement the following improvements:

1. A smaller Chassis- This would allow our robot to travel faster in the maze

2. A better gear-head ratio on the motors so that we could increase the wheel size

without speeding up the robot. This would also allow us to do ramps.

3. Add several digital front wall sensors so that we could implement object

avoidance.

With the implementation of these four changes we feel that this project would be ready

for public distribution.

28

Appendix A: Motor Selection Criteria

Motor Ratio Voltage No load
Current

Starting
current

speed w/gh Toque w/GH power Quad

Max 6 green 14:1 18 26 1.28 680 182 5.32 Y
Max 6 gray 30:1 9 78 4.9 346 262 9.6 Y
Max 5 14:1 12 42 510 N
Max 11 10:1 18 37 3.25 920 182 13.6 Y

29

Appendix B: Altera Code

% This code is for HC12 memory expansion, as well as quatrature position and speed
 determination. Position and speed are memory mapped to addresses 0x0400 through
 0x0407 %

SUBDESIGN memexp2
(
 E : INPUT; % E-Clock %
 R_W : INPUT; % R/W Line %
 RESETn : INPUT; % Reset line %
 LSTRBn : INPUT; % Let's us tell if 8-bit or 16-bit access %

 PA[7..0] : BIDIR; % Address and Data (15-8) from HC12 %
 PB[7..0] : BIDIR; % Address and Data (7-0) from HC12 %

 WEn : OUTPUT; % Write Enable to memory %
 OEn : OUTPUT; % Output Enable to memory %
 CS_MEM_ODDn : OUTPUT; % Chip Select for odd addresses %
 CS_MEM_EVENn : OUTPUT; % Chip Select for even addresses %
 A[15..1] : OUTPUT; % Demultiplexed address bits %

 LCHA : INPUT; % Left Motor Channel A Encoder %
 LCHB : INPUT; % Left Motor Channel B Encoder %
 RCHA : INPUT; % Right Motor Channel B Encoder %
 RCHB : INPUT; % Right Motor Channel B Encoder %
 LTCHclk : INPUT; % Latch clock for speed determination %
)

VARIABLE
 demux[15..0] : DFF; % Demuliplexed address internal %
 CS_MEM : NODE; % Tell's when address in range of memory %

 IDB[15..0] : NODE; % Internal data bus to send to HC12 %
 PA_OE : NODE; % High when we want to send data to HC12 on %

 % the HC12's Port A %
 PB_OE : NODE; % High when we want to send data to HC12 on %

 % the HC12's Port B %
 XX : DFF; % Used to allow RESETn to be connected to pin 20 %

 LCNT[8..0] : DFF; % Internal 9-bit counter for left motor speed %
 RCNT[8..0] : DFF; % Internal 9-bit counter for right motor speed %
 LSPD[8..0] : DFF; % Internal 9-bit latched speed register for left motor %
 RSPD[8..0] : DFF; % Internal 9-bit latched speed register for right motor %
 LDIR : DFF; % Internal direction bit for left motor %
 RDIR : DFF; % Internal direction bit for right motor %
 CRESETn : NODE; % Internal reset for counters to determine speed %

30

 DFLCHA : NODE; % Digitally filtered LCHA %
 DFLCHB : NODE; % Digitally filtered LCHB %
 DFRCHA : NODE; % Digitally filtered RCHA %
 DFRCHB : NODE; % Digitally filtered RCHB %
 LTP : NODE; % Left Transition Pulse %
 RTP : NODE; % Right Transition Pulse %
 DFLTCH : NODE; % Digitally filtered latch clock %

 % State machine to filter LCHA %
 LCHAF: MACHINE WITH STATES (LA10, LA20, LA11, LA21);

 % State machine to filter LCHB %
 LCHBF: MACHINE WITH STATES (LB10, LB20, LB11, LB21);

 % State machine to filter RCHA %
 RCHAF: MACHINE WITH STATES (RA10, RA20, RA11, RA21);

 % State machine to filter RCHB %
 RCHBF: MACHINE WITH STATES (RB10, RB20, RB11, RB21);

 LPG: MACHINE WITH STATES (LXX, LXnX); % State machine to generate %
 % left transition pulse %

 RPG: MACHINE WITH STATES (RXX, RXnX); % State machine to generate %
 % right transition pulse %

 % State machine to filter LTCHclk %
 LTCHF: MACHINE WITH STATES (LTCH10, LTCH20, LTCH11, LTCH21);

 % State machine to reset counters after speed has been latched %
 CRST: MACHINE WITH STATES (C0, C1, C2, C3);

BEGIN
% The following state machines have E as there clock and the complement of

 RESETn as thee reset %
LCHAF.clk = E;
LCHAF.reset = !RESETn;

LCHBF.clk = E;
LCHBF.reset = !RESETn;

RCHAF.clk = E;
RCHAF.reset = !RESETn;

RCHBF.clk = E;
RCHBF.reset = !RESETn;
LPG.clk = E;
LPG.reset = !RESETn;

31

RPG.clk = E;
RPG.reset = !RESETn;

LTCHF.clk = E;
LTCHF.reset = !RESETn;

% Left direction flip-flop uses left channel B to clock in left channel A.
 This is used to determine direction %
LDIR.clk = DFLCHB;
LDIR.clrn = RESETn;
LDIR.d = DFLCHA;

% Right direction flip-flop uses right channel A to clock in right channel B.
 This is used to determine direction %
RDIR.clk = DFRCHA;
RDIR.clrn = RESETn;
RDIR.d = DFRCHB;

% The counter reset state machine %
CRST.clk = E;
CRST.reset = !RESETn;

% The motor tick counters count pulses generated by the state transition of
 the quadrature encoders %

% Tick counter for left motor %
LCNT[].clk = LTP;
LCNT[].clrn = CRESETn;
% Count up if rotating forward %
IF (LDIR.q == 0) THEN

LCNT[].d = LCNT[].q + 1;
% Count down if rotating backwards %
ELSE

LCNT[].d = LCNT[].q - 1;
END IF;

% Tick counter for right motor %
RCNT[].clk = RTP;
RCNT[].clrn = CRESETn;
% Count up if rotating forward %
IF (RDIR.q == 0) THEN

RCNT[].d = RCNT[].q + 1;
% Count down if rotating backwards %
ELSE

RCNT[].d = RCNT[].q - 1;
END IF;

32

% Counter are latched into speed registers. Latch for the speed registers is derived
 from the LTCHclk %

% Left speed registers %
LSPD[].clk = DFLTCH;
LSPD[].clrn = RESETn;
LSPD[].d = LCNT[].q;

% Right speed registers %
RSPD[].clk = DFLTCH;
RSPD[].clrn = RESETn;
RSPD[].d = RCNT[].q;

% Table for the Counter reset state machine %
TABLE
CRST, DFLTCH => CRST, CRESETn;
C0, 0 => C0, 1;
C0, 1 => C1, 1;
C1, 0 => C0, 1;
C1, 1 => C2, 1;
C2, X => C3, 0;
C3, 0 => C0, 1;
C3, 1 => C3, 1;
END TABLE;

% Table for the left channel A filter %
TABLE
LCHAF, LCHA => LCHAF, DFLCHA;
LA10, 0 => LA10, 0;
LA10, 1 => LA20, 0;
LA20, 0 => LA10, 0;
LA20, 1 => LA11, 0;
LA11, 0 => LA21, 1;
LA11, 1 => LA11, 1;
LA21, 0 => LA10, 1;
LA21, 1 => LA11, 1;
END TABLE;

33

% Table for the left channel B filter %
TABLE
LCHBF, LCHB => LCHBF, DFLCHB;
LB10, 0 => LB10, 0;
LB10, 1 => LB20, 0;
LB20, 0 => LB10, 0;
LB20, 1 => LB11, 0;
LB11, 0 => LB21, 1;
LB11, 1 => LB11, 1;
LB21, 0 => LB10, 1;
LB21, 1 => LB11, 1;
END TABLE;

% Table for the right channel A filter %
TABLE
RCHAF, RCHA => RCHAF, DFRCHA;
RA10, 0 => RA10, 0;
RA10, 1 => RA20, 0;
RA20, 0 => RA10, 0;
RA20, 1 => RA11, 0;
RA11, 0 => RA21, 1;
RA11, 1 => RA11, 1;
RA21, 0 => RA10, 1;
RA21, 1 => RA11, 1;
END TABLE;

% Table for the right channel B filter %
TABLE
RCHBF, RCHB => RCHBF, DFRCHB;
RB10, 0 => RB10, 0;
RB10, 1 => RB20, 0;
RB20, 0 => RB10, 0;
RB20, 1 => RB11, 0;
RB11, 0 => RB21, 1;
RB11, 1 => RB11, 1;
RB21, 0 => RB10, 1;
RB21, 1 => RB11, 1;
END TABLE;

34

% Table for the left state transition pulse generator %
TABLE
LPG, DFLCHA, DFLCHB => LPG, LTP;
LXX, 0, 0 => LXX, 0;
LXX, 0, 1 => LXnX, 1;
LXX, 1, 0 => LXnX, 1;
LXX, 1, 1 => LXX, 0;
LXnX, 0, 0 => LXX, 1;
LXnX, 0, 1 => LXnX, 0;
LXnX, 1, 0 => LXnX, 0;
LXnX, 1, 1 => LXX, 1;
END TABLE;

% Table for the right state transition pulse generator %
TABLE
RPG, DFRCHA, DFRCHB => RPG, RTP;
RXX, 0, 0 => RXX, 0;
RXX, 0, 1 => RXnX, 1;
RXX, 1, 0 => RXnX, 1;
RXX, 1, 1 => RXX, 0;
RXnX, 0, 0 => RXX, 1;
RXnX, 0, 1 => RXnX, 0;
RXnX, 1, 0 => RXnX, 0;
RXnX, 1, 1 => RXX, 1;
END TABLE;

% Table for the LTCHclk filter %
TABLE
LTCHF, LTCHclk => LTCHF, DFLTCH;
LTCH10, 0 => LTCH10, 0;
LTCH10, 1 => LTCH20, 0;
LTCH20, 0 => LTCH10, 0;
LTCH20, 1 => LTCH11, 0;
LTCH11, 0 => LTCH21, 1;
LTCH11, 1 => LTCH11, 1;
LTCH21, 0 => LTCH10, 1;
LTCH21, 1 => LTCH11, 1;
END TABLE;

35

%

%
% Address decoding and demultiplexing %
% Latch address on rising edge of E clock %
%

%

demux[15..8].d = PA[7..0];
demux[7..0].d = PB[7..0];
demux[15..0].clk = E;
A[15..1] = demux[15..1].q; % Don't need LSB of address %

% Enable writes when E high and R/W low %

IF (E == VCC) & (R_W == GND) THEN
 WEn = GND;
ELSE
 WEn = VCC;
END IF;

% Enable reads when E high and R/W high %

IF (E == VCC) & (R_W == VCC) THEN
 OEn = GND;
ELSE
 OEn = VCC;
END IF;

% Access external memory when addresses in the range 0x1000 to 0x7fff %

IF (E==VCC) & ((demux[15..0].q >= H"1000") & (demux[15..0].q <= H"7fff")) THEN
CS_MEM = VCC;

ELSE
 CS_MEM = GND;
END IF;

% Access even memory locations when address is even %

IF (CS_MEM == VCC) & (demux0.q == GND) THEN
 CS_MEM_EVENn = GND;
ELSE
 CS_MEM_EVENn = VCC;
END IF;

36

% Access odd memory locations when LSTRBn is low %

IF (CS_MEM == VCC) & (LSTRBn == GND) THEN
 CS_MEM_ODDn = GND;
ELSE

CS_MEM_ODDn = VCC;
END IF;

% A read from address 0x0400 reads the Left Motor Tick Counter %
% A read from address 0x0402 reads the Right Motor Tick Counter %
% A read from address 0x0404 reads the Left Motor Speed Register %
% A read from address 0x0406 reads the Right Motor Speed Register %

IF (demux[15..0].q == H"0400") # (demux[15..0].q == H"0401") THEN
% Sign extend left count register to 16 bits %
IF(LDIR.q == 0) THEN

IDB[15..9] = B"0000000";
ELSE

IDB[15..9] = B"1111111";
END IF;
IDB[8..0] = LCNT[8..0].q;

ELSIF (demux[15..0].q == H"0402") # (demux[15..0].q == H"0403") THEN
% Sign extend right count register to 16 bits %
IF(RDIR.q == 0) THEN

IDB[15..9] = B"0000000";
ELSE

IDB[15..9] = B"1111111";
END IF;
IDB[8..0] = RCNT[8..0].q;

ELSIF (demux[15..0].q == H"0404") # (demux[15..0].q == H"0405") THEN
% Sign extend left speed register to 16 bits %
IF(LDIR.q == 0) THEN

IDB[15..9] = B"0000000";
ELSE

IDB[15..9] = B"1111111";
END IF;
IDB[8..0] = LSPD[8..0].q;

ELSIF (demux[15..0].q == H"0406") # (demux[15..0].q == H"0407") THEN
% Sign extend right speed register to 16 bits %
IF(RDIR.q == 0) THEN

IDB[15..9] = B"0000000";
ELSE

IDB[15..9] = B"1111111";
END IF;
IDB[8..0] = RSPD[8..0].q;

ELSE
 IDB[15..0] = H"0000";
END IF;

37

% If reading from address 0x0400, 0x0402, 0x0404, or 0x0406, we need to drive the %
% Port A lines when E is high %

IF (R_W==VCC) & (E == VCC) &
((demux[15..0].q == H"0400") # (demux[15..0].q == H"402")
(demux[15..0].q == H"404") # (demux[15..0].q == H"406"))

THEN
PA_OE = VCC;

ELSE
 PA_OE = GND;
END IF;

% If reading from address 0x0400 - 0x0407, we need to drive the Port B lines when E is
 high %

IF ((R_W == VCC) & (E == VCC) & (LSTRBn == GND))
& ((demux[15..0].q == H"0400") # (demux[15..0].q == H"0401")
(demux[15..0].q == H"402") # (demux[15..0].q == H"403")
(demux[15..0].q == H"404") # (demux[15..0].q == H"405")
(demux[15..0].q == H"406") # (demux[15..0].q == H"407"))

THEN
 PB_OE = VCC;
ELSE
 PB_OE = GND;
END IF;

% Here's where we put the internal data bus values onto Port A %

PA[7] = TRI(IDB[15], PA_OE);
PA[6] = TRI(IDB[14], PA_OE);
PA[5] = TRI(IDB[13], PA_OE);
PA[4] = TRI(IDB[12], PA_OE);
PA[3] = TRI(IDB[11], PA_OE);
PA[2] = TRI(IDB[10], PA_OE);
PA[1] = TRI(IDB[9], PA_OE);
PA[0] = TRI(IDB[8], PA_OE);

% Here's where we put the internal data bus values onto Port B %

PB[7] = TRI(IDB[7], PB_OE);
PB[6] = TRI(IDB[6], PB_OE);
PB[5] = TRI(IDB[5], PB_OE);
PB[4] = TRI(IDB[4], PB_OE);
PB[3] = TRI(IDB[3], PB_OE);
PB[2] = TRI(IDB[2], PB_OE);
PB[1] = TRI(IDB[1], PB_OE);
PB[0] = TRI(IDB[0], PB_OE);

38

% We have to do the following to have pins mapped correctly %
XX.clk = E;
XX.d = VCC;
XX.clrn = !RESETn;

END;

39

Appendix C: HC12 Code

/* This is the HC12 header file. It contains definitions of pointers to various registers. */
#ifndef __HC12_H
#define __HC12_H 1
#define _BASE 0x0000

#define LCNT (* (int *)(_BASE+0x400))
#define RCNT (* (int *)(_BASE+0x402))
#define LSPD (* (int *)(_BASE+0x404))
#define RSPD (* (int *)(_BASE+0x406))

#define RTICTL (* (unsigned char *)(_BASE+0x14))
#define RTIFLG (* (unsigned char *)(_BASE+0x15))
#define INTCR (* (unsigned char *)(_BASE+0x1e))

#define PWCLK (* (unsigned char *)(_BASE+0x40))
#define PWPOL (* (unsigned char *)(_BASE+0x41))
#define PWEN (* (unsigned char *)(_BASE+0x42))
#define PWSCAL1 (* (unsigned char *)(_BASE+0x46))
#define PWPER0 (* (unsigned char *)(_BASE+0x4c))
#define PWPER1 (* (unsigned char *)(_BASE+0x4d))
#define PWPER2 (* (unsigned char *)(_BASE+0x4e))
#define PWDTY0 (* (unsigned char *)(_BASE+0x50))
#define PWDTY1 (* (unsigned char *)(_BASE+0x51))
#define PWDTY2 (* (unsigned char *)(_BASE+0x52))
#define PWCTL (* (unsigned char *)(_BASE+0x54))
#define PORTP (* (unsigned char *)(_BASE+0x56))
#define DDRP (* (unsigned char *)(_BASE+0x57))

#define ATDCTL2 (* (unsigned char *)(_BASE+0x62))
#define ATDCTL4 (* (unsigned char *)(_BASE+0x64))
#define ATDCTL5 (* (unsigned char *)(_BASE+0x65))
#define ADR2H (* (unsigned char *)(_BASE+0x74))
#define ADR3H (* (unsigned char *)(_BASE+0x76))
#define ADR4H (* (unsigned char *)(_BASE+0x78))
#define ADR5H (* (unsigned char *)(_BASE+0x7a))
#define ADR6H (* (unsigned char *)(_BASE+0x7c))
#define ADR7H (* (unsigned char *)(_BASE+0x7e))

#define PACTL (* (unsigned char *)(_BASE+0xa0))
#define PAFLG (* (unsigned char *)(_BASE+0xa1))
#define PACNT (* (unsigned int *)(_BASE+0xa2))

#define PORTDLC (* (unsigned char *)(_BASE+0xfe))
#define DDRDLC (* (unsigned char *)(_BASE+0xff))

#endif

40

/* This is the setup header file. This file contains functions that setup various subsystems
 of the robot */

#include <hc12.h>

/* This function performs basic setup of the PWM system */
void PWM_setup()
{
 // Choose 8-bit mode
 PWCLK = PWCLK & ~0xC0;
 // Choose left-aligned
 PWCTL = PWCTL & ~0x08;
 // Choose high during duty cycle polarity
 PWPOL = PWPOL | 0x0F;
}

/* This function sets up the latch for the digital speed decoders in Altera. The latch
 frequency is about 198.4 Hz. */
void LATCH_setup()
{
 // Choose clock mode for channel 2
 PWPOL = PWPOL | 0x40;

 // Select N = 5 and M = 2
 PWCLK |= 0x05;
 PWSCAL1 = 2;

 // Select period of 210 and duty of 105
 PWPER2 = 209;
 PWDTY2 = 104;

 PWEN |= 0x04; // Enable PWM Channel 2
}

41

/* This function sets up the H-Bridge PWM and direction signals */
void HB_setup()
{
 // Select clock mode 1 for Channels 1 and 0
 PWPOL = PWPOL & ~0x30;
 // Select N = 4 for Channels 1 and 0
 PWCLK = (PWCLK & ~0x18) | 0x20;

 // Select period of 200 for Channels 1 and 0
 PWPER1 = 199;
 PWPER0 = 199;

 PWEN |= 0x03; //Enable PWM Channels 1 & 0

 // Enable Direction Bits for Output
 DDRP |= 0xC0;

 // Initialize the H-bridge duty cycles to 0
 PWDTY1 = 0;
 PWDTY0 = 0;
}

/* This function sets up the A/D Port. Four distance sensors, two on the left & two
 on the right, and two flame sensors plug into the A/D Port. */
void AD_setup()
{
 ATDCTL2 = 0x80; //Power up A/D
 ATDCTL4 = 0x01; //Select A/D clock
 ATDCTL5 = 0x40; //8-channel mode

 //Scan continuously on all channels
 ATDCTL5 |= 0x30;
}

/* This function sets up bits 0-2 of Port DLC as inputs. The Whiteline sensor, Frontwall
 sensor, and Tone Decoder plug into Port DLC. */
void DLC_setup()
{
 DDRDLC &= ~0x07;
}

42

/* This is the functions header file */

#include <hc12.h>

#define forward 0
#define backwards 1
#define left 2
#define right 3

#define Small_Room 0
#define Large_Room 1

signed int desired_speed, ldesired_speed, rdesired_speed;
signed int desired_dist, desired_orient;

signed int ldty, rdty;
signed int lserr, rserr, curr_orient;

signed int fsum, fdiff;
unsigned char fire = 0, fireout = 0;
unsigned char flame =0, flameh = 0, flamegh = 0;

unsigned char ws = 0, wlc = 0, InRoom = 0, room;
unsigned char room_size, room_start;
unsigned int dist_sum;
unsigned char smallest_dist, smallest_turns;

unsigned char hallway_nav_complete = 0;
unsigned char leftwall_nav_complete = 0;
unsigned char room_exited = 0;

unsigned int counter;
unsigned char i, cc;
unsigned int desired_ticks, lticks, rticks;

/* This function enables the RTI interrupt */
void enableRTI()
{
 RTICTL = 0x84; // Enable RTI for 8ms
 RTIFLG = 0x80; // Clear RTI flag
 _asm("cli"); // Clear I bit in CCR
}

/* This function disables the RTI interrupt */
void disableRTI()
{
 RTICTL = 0x00; // Clear RTI Control Register
 _asm("sei"); // Set I bit in CCR
}

43

/* This is a delay function */
void delay(int num)
{
 int y = num;
 int x;

 while(y > 0)
 {
 // Inner loop delays for 1 ms
 x = 1333;
 while (x > 0)
 {
 x = x - 1;
 }
 y = y - 1;
 }
}

/* This function returns a 1 if there is a left wall and a 0 if not */
unsigned char LeftWall()
{
 return ((ADR2H > 30) && (ADR3H > 30));
}

/* This function returns a 1 if there is a right wall and a 0 if not */
unsigned char RightWall()
{
 return ((ADR6H > 30) && (ADR7H > 30));
}

/* This function returns a 1 if there is a front wall and a 0 if not */
unsigned char FrontWall()
{
 return ((PORTDLC & 0x02) == 0x02);
}

/* This function returns a 1 if there is a white surface and a 0 if not */
unsigned char WhiteSurface()
{
 return ((PORTDLC & 0x01) == 0x01);
}

/* This function returns a 1 if the tone detector has been triggered and a 0 if not */
unsigned char Tone()
{
 return ((PORTDLC & 0x04) == 0x00);
}

44

/* This function returns a 1 if there is a flame present and a 0 if not */
unsigned char AFlame()
{
 return ((ADR4H > 40) || (ADR5H > 40));
}

/* This function returns a 1 if the robot is about parallel to a left wall and a 0 if
 it is not */
unsigned char LInRange()
{
 unsigned char r;
 if(((ADR2H < desired_dist - 10) && (ADR3H < desired_dist - 10))
 || ((ADR2H > desired_dist) && (ADR3H > desired_dist)))
 r = 1;
 else
 r = 0;

 return r;
}

/* This function returns a 1 if the robot is about parallel to a right wall and a 0 if
 it is not */
unsigned char RInRange()
{
 unsigned char r;
 if(((ADR6H < desired_dist - 10) && (ADR7H < desired_dist - 10))
 || ((ADR6H > desired_dist) && (ADR7H > desired_dist)))
 r = 1;
 else
 r = 0;

 return r;
}

/* This is the error and exit function. This function is called when everything hits
 the fan. */
void error()
{
 // Set H-bridge duty cycles to 0
 PWDTY1 = 0;
 PWDTY0 = 0;
 // Exit and return to DBug-12
 exit(0);
}

45

/* This function waits for a tone to be detected and then undetected before exiting */
void Wait_for_Tone()
{
 while(!Tone()) {} //Wait until tone is detected
 delay(200);
 while(Tone()) {} //Wait until tone is undetected
}

/* This function counts white lines */
void Count_Whitelines()
{
 // Check for White Surface
 if(WhiteSurface())
 ws = 1;

 // If a white surface has been seen and now the surface is black, count whiteline
 if(!WhiteSurface() && ws)
 {
 wlc++;
 ws = 0;
 }
}

/* This function sets the direction of the motors */
void Set_Direction(unsigned char dir)
{
 if(dir == forward)
 PORTP = (PORTP & ~0x80) | 0x40;
 if(dir == backwards)
 PORTP = (PORTP & ~0x40) | 0x80;
 if(dir == left)
 PORTP |= 0xC0;
 if(dir == right)
 PORTP &= ~0xC0;
}

/* This function sets the duty cycle of the H-bride
 PWM signals */
void Set_DTY(unsigned char LDTY, unsigned char RDTY)
{
 PWDTY1 = RDTY;
 PWDTY0 = LDTY;
}

46

/* This function performs a Hamamatsu scan */
void Ham_Scan()
{
 // Set RTI condition code to 128. Reset RTI counter and pulse accumulator
 cc = 128;
 counter = 0;
 PACNT = 0;

 // Wait until flame has been detected or counter has reached 400.
 while(!flameh && (counter < 400))
 {
 if(PACNT >= 1)
 {
 flameh = 1;
 PORTP |= 0x10;
 }
 else
 {
 flameh = 0;
 PORTP &= ~0x10;
 }
 }
 PACNT = 0;
}

/* This function turns the fan off */
void fan_off()
{
 PORTP = PORTP & ~0x20; //Make bit 5 of Port P low
 DDRP &= ~0x20; //Disable bit 5 of Port P
}

/* This function turns the fan on */
void fan_on()
{
 DDRP |= 0x20; //Enable bit 5 of Port P
 PORTP |= 0x20; //Make bit 5 of Port P high
}

47

/* This function sets up closed-loop speed control */
void go(signed int speed)
{
 desired_speed = speed; // Set desired speed

 cc = 0; //Set RTI condition code to 0

 // Set Direction
 if(desired_speed >= 0)
 Set_Direction(forward);
 else
 Set_Direction(backwards);

 // Set initial duty cycles to the desired speed
 Set_DTY((unsigned char)desired_speed, (unsigned char)desired_speed);
}

/* This function sets up closed-loop speed control with left wall following */
void golw(signed int speed, signed char dist, signed char orient)
{
 // Only go forward when wall following
 if(speed >= 0)
 desired_speed = speed;
 else
 desired_speed = -speed;

 // Set desired speed for left and right motors
 ldesired_speed = desired_speed;
 rdesired_speed = desired_speed;

 // Set desired distance and orientation from wall
 desired_dist = dist;
 desired_orient = orient;

 cc = 1; // Set RTI condition code to 1
 i = 0; // Reset i

 Set_Direction(forward); //Go Forward

 // Set initial duty cycles to the desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);//Set Duty
Cycle
}

48

/* This function sets up closed-loop speed control with right wall following */
void gorw(signed int speed, signed char dist, signed char orient)
{
 // Only go forward when wall following
 if(speed >= 0)
 desired_speed = speed;
 else
 desired_speed = -speed;

 // Set desired speed for left and right motors
 ldesired_speed = desired_speed;
 rdesired_speed = desired_speed;

 // Set diesired distance and orientation to wall
 desired_dist = dist;
 desired_orient = orient;

 cc = 2; // Set condition code to 2
 i = 0; // Reset i

 Set_Direction(forward); //Go forward

 // Set initial duty cycles to the desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);
}

49

/* This sets up closed-loop speed control with left wall following while performing a
 hamamatsu scan */
void goscan()
{
 // Set desired speed to 60
 desired_speed = 60;
 ldesired_speed = desired_speed;
 rdesired_speed = desired_speed;

 // Set desired distance from the wall to 80.
 desired_dist = 80;
 // Set desired orientation to wall to 0.
 desired_orient = 0;

 PACNT = 0; // Reset pulse accumulator
 cc = 1; // Set RTI condition code to 0
 counter = 0; // Reset RTI counter

 Set_Direction(forward); // Go forward

 // Set initial duty cycles to the desired speed
 Set_DTY((unsigned char)desired_speed, (unsigned char)desired_speed);

 // Wait until a flame has been detected, a front wall, or the counter has reached 100
 while(!FrontWall() && !flamegh && (counter <= 100))
 {
 if(PACNT > 0)
 flamegh = 1;
 }
}

50

// This function turns in place 45 degrees */
void tip45(unsigned int dir)
{
 // Set desired speed to 100
 ldesired_speed = 100;
 rdesired_speed = 100;

 // Set desired number of motor ticks to 600
 desired_ticks = 600;

 // Set direction
 Set_Direction(dir);
 // Set initial duty cycles to the desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 if(dir == left)
 {
 // Negate desired left motor speed
 ldesired_speed = -ldesired_speed;
 rticks = 0; // Reset right motor tick counter
 cc = 3; // Set RTI condition code to 3

 // Turn in place left by 45 degrees
 while(rticks <= desired_ticks)
 {
 if(rticks > desired_ticks - 1)
 break;
 }
 }

 if(dir == right)
 {
 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 lticks = 0; // Reset left motor tick counter
 cc = 4; //Set RTI condition code to 4

 // Turn in place right by 45 degrees
 while(lticks <= desired_ticks)
 {
 if(lticks > desired_ticks - 1)
 break;
 }
 }

51

 // Set duty cycles and desired speeds to 0
 Set_DTY(0, 0);
 ldesired_speed = 0;
 rdesired_speed = 0;
}

/* This function turns in place 90 degrees */
void tip90(unsigned int dir)
{
 // Set desired speeds to 100
 ldesired_speed = 100;
 rdesired_speed = 100;

 // Set desired number of ticks to 1300
 desired_ticks = 1300;

 // Set direction
 Set_Direction(dir);
 // Set initial duty cycles to the desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 if(dir == left)
 {
 // Negate desired left motor speed
 ldesired_speed = -ldesired_speed;
 rticks = 0; // Reset right motor tick counter
 cc = 3; // Set RTI condition code to 3

 // Turn in place left by 90 degrees
 while(rticks <= desired_ticks)
 {
 if(rticks > desired_ticks - 1)
 break;
 }
 }
 if(dir == right)
 {
 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 lticks = 0; // Reset left motor tick counter
 cc = 4; // Set RTI condition code to 4

 // Turn in place right by 90 degrees
 while(lticks <= desired_ticks)
 {
 if(lticks > desired_ticks - 1)
 break;
 }
 }

52

 // Set duty cycles and desired speeds to 0
 Set_DTY(0, 0);
 ldesired_speed = 0;
 rdesired_speed = 0;
}

/* This function turns in place 180 degrees */
void tip180()
{
 // Set desired speeds to 100
 ldesired_speed = 100;
 rdesired_speed = 100;

 // Set desired number of ticks to 3500
 desired_ticks = 3500;

 Set_Direction(right); // Turn right
 // Set initial duty cycles to the desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 lticks = 0; // Reset left motor tick counter
 cc = 4; // Set RTI condition code to 4

 // Turn in place right by 180 degrees
 while(lticks <= desired_ticks)
 {
 if(lticks > desired_ticks - 1)
 break;
 }

 // Set duty cycles and desired speeds to 0
 Set_DTY(0, 0);
 ldesired_speed = 0;
 rdesired_speed = 0;
}

53

/* This function orients the robot parallel to the left wall */
void orient_left()
{
 // Set desired speeds to 60
 ldesired_speed = 60;
 rdesired_speed = 60;

 // Set inital duty cycle to desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 if(ADR2H > ADR3H)
 {
 Set_Direction(right); // Turn right
 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 cc = 4; // Set RTI condition code to 4

 // Turn right until almost parallel to wall
 while(ADR2H > ADR3H + 25);
 }
 else
 {
 Set_Direction(left); // Turn left
 // Negate diesired left motor speed
 ldesired_speed = -ldesired_speed;
 cc = 3; // Set RTI condition code to 3

 // Turn left until almost parallel to wall
 while(ADR3H > ADR2H + 25);
 }

 // Set duty cycles and desired speeds to 0
 Set_DTY(0, 0);
 ldesired_speed = 0;
 rdesired_speed = 0;
}

54

/* This function orients the robot parallel to the right wall */
void orient_right()
{
 // Set desired speeds to 60
 ldesired_speed = 60;
 rdesired_speed = 60;

 // Set initial duty cycles to desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 if(ADR7H > ADR6H)
 {
 Set_Direction(right); // Turn right
 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 cc = 4; // Set RTI condition code to 4

 // Turn until almost parallel to wall
 while(ADR7H > ADR6H + 25);
 }
 else
 {
 Set_Direction(left); // Turn left
 // Negate desired left motor speed
 ldesired_speed = -ldesired_speed;
 cc = 3; // Set RTI condition code to 3

 // Turn until almost parallel to wall
 while(ADR6H > ADR7H + 25);
 }

 // Set duty cycles and desired speeds to 0
 Set_DTY(0, 0);
 ldesired_speed = 0;
 rdesired_speed = 0;
}

55

/* This function scan a room to see if robot is in a small or large room. It also checks if
 the robot is at the home circle. */
void Scan_Room()
{
 unsigned char c;

 // Initializations
 room_start = 128;
 room = 128;
 counter = 0;
 wlc = 0;

 // Check for a white surface
 if(!WhiteSurface())
 {
 smallest_dist = ADR2H;
 smallest_turns = 0;

 // Orient to nearest wall if one is present
 if((ADR2H >= 80) || (ADR3H >= 80))
 orient_left();
 if((ADR6H >= 80) || (ADR7H >= 80))
 orient_right();

 // Scan to find nearest left wall.
 for(c = 0; c < 8; c++)
 {
 // Make eight left 45 degree turns to find the nearest wall.
 tip45(left);
 delay(100);
 // Store the smallest distance and number of turns to face robot towards the wall that
 // is the closest
 if(smallest_dist < ADR2H)
 {
 smallest_dist = ADR2H;
 smallest_turns = c;
 }
 }
 Set_DTY(0, 0); // Set duty cycles to 0

 // Turn the robot until it is facing the closest left wall
 for(c = 0; c < smallest_turns; c++)
 {
 tip45(left);
 delay(100);
 }

56

 go(30); // Go towards the nearest wall
 while((ADR2H < 80) && (ADR3H < 60) && (ADR6H < 80) && !FrontWall() &&
 !WhiteSurface());

 // If there is a white surface, turn around and left wall follow
 if(WhiteSurface())
 {
 tip180(); // Turn 180 degrees
 delay(100);
 golw(60, 100, 0); // Left Wall Follow
 // Left wall follow until there is a front wall and turn right 90 degrees
 while(!FrontWall())
 tip90(right);
 delay(100);
 // Orient parallel to left wall
 orient_left();
 }

 // If left rear sensor sees a wall and there is no front wall, turn left 45 degrees
 if((ADR3H >= 60) && !FrontWall())
 tip45(left);

 // If right front sensor sees a wall and there is no front wall, turn around
 if((ADR6H >= 80) && !FrontWall())
 {
 tip180(); // Turn 180 degrees
 delay(100);
 // Orient parallel to left wall
 orient_left();
 }

 // If left front sensor sees a wall and there is no front wall, orient parallel to left wall
 if((ADR2H >= 80) && !FrontWall())
 orient_left();

 // If there is front wall, turn right 90 degrees
 if(FrontWall())
 {
 tip90(right);
 delay(100);
 }

 counter = 0; // Reset RTI counter
 golw(60, 100, 0); // Left wall follow

57

 // Left wall follow until there is a front wall or counter is 100. Count white lines while
 // doing this.
 while(!FrontWall() && (counter < 100))
 Count_Whitelines();

 // If there is a front wall, turn right 90 degrees and then left wall follow
 if(FrontWall())
 {
 tip90(right);
 delay(100);
 golw(60, 100, 0);
 }

 // Continue left wall following until there is no left wall. Count white line while doing
 // this.
 while(LeftWall())
 {
 Count_Whitelines();

 // If there is a front wall, turn right 90 degrees, orient robot parallel to left wall, and
 // continue left wall following
 if(FrontWall())
 {
 tip90(right);
 delay(100);
 golw(60, 100, 0);
 delay(200);
 }
 }

 // After left wall has disappeared, go forward until there is a front wall.
 go(30);
 while(!FrontWall());
 go(0);

 dist_sum = 0;

 // If no white lines have been counted, scan room to determine its size
 if(wlc == 0)
 {
 // Make eight 45 degree turns, summing up the the values from the distance sensors
 for(c = 0; c < 8; c++)
 {
 tip45(right);
 delay(100);
 dist_sum = dist_sum + ADR2H + ADR3H + ADR6H + ADR7H;
 }
 Set_DTY(0, 0); // Set duty cycles to 0

58

 // Determine room size
 if(dist_sum > 1700)
 room_size = Small_Room;
 else
 room_size = Large_Room;
 }
 // If a white line has been counted, then robot has started from room 4
 else
 {
 room_start = 4;
 room = 4;
 }
 }
 // If a white surface was detected initially, then robot has started from the home circle
 else
 {
 room = 0;
 room_start = 0;
 orient_left();
 }
}

/* This function exits the room after the room scan and after putting out the flame */
void Exit_Room()
{
 // If fire is not out, then exiting room after performing room scan
 if(!fireout)
 {
 tip90(left); // Turn left 90 degrees
 delay(100);

 // Oreint parallel to right wall
 orient_right();
 delay(100);

 // If not in room 4, go forward until there is a front wall
 if(room_start != 4)
 {
 // Perform final check on the size of room if it is a large room by checking the value
 // from the left rear sensor
 if((room_size == Large_Room) && (ADR3H > 25))

room_size = Small_Room;

 // Right wall follow out of the room
 gorw(50, 100, 0);
 while(!FrontWall() && RightWall());

59

 // If no front wall and no right wall, go straight until there is a front wall
 if(!FrontWall() && !RightWall())
 {
 delay(200);
 go(40);
 while(!FrontWall());
 }
 go(0);

 // If there is no right wall, then robot has started in room 1
 if(!RightWall())
 {
 room_start = 1;
 room = 1;
 }
 else
 {

// If there is a right wall and the room is small, then robot has started in
 // room 3
 if(room_size == Small_Room)
 {
 room_start = 3;
 room = 3;
 }
 // If there is a right wall and the room is large, then robot has started in room 4
 else
 {
 room_start = 2;
 room = 2;
 }
 }

 // Turn left 90 degrees and orient parallel to right wall
 tip90(left);
 orient_right();
 }
 }

60

 // Exit room after outing flame
 else
 {
 // Procedures for exiting rooms 1 and 2
 if(room < 3)
 {
 // Backup
 go(-40);
 delay(200);

 tip45(right); // Turn right 45 degrees
 delay(100);

 // Go towards a wall
 go(40);
 while((ADR2H < 80) && (ADR6H < 80) && !FrontWall());

 // If there is a front wall, turn right 90 degrees and orient parallel to left wall
 if(FrontWall())
 {

tip90(right);
 delay(100);

orient_left();
 }

 // If right front sensor sees wall and left front sensor sees no wall and there is no front
 // wall, turn robot around and orient parallel to left wall
 if((ADR6H >= 80) && (ADR2H < 80) && !FrontWall())
 {
 orient_right();
 tip180();
 delay(100);
 orient_left();
 }

 // If left front sensor sees wall and there is no front wall, orient parallel to left wall
 if((ADR2H >= 80) && !FrontWall())
 orient_left();

 // Left wall follow
 golw(50, 100, 0);
 delay(200);

61

 // If no left wall, go forward to a left wall
 if(!LeftWall())
 {

go(40);
while((ADR2H < 80) && !FrontWall());

// If there is front wall, turn right 90 degrees and orient parallel to left wall
if(FrontWall())
{
 tip90(right);
 orient_left();
}

 // If left front sensor sees a wall, orient parallel to left wall
if(ADR2H >= 80)
 orient_left();

 }

 // Left wall follow until there is no left wall
 while(LeftWall())
 {

// If there is a front wall, turn right 90 degrees, oreint parallel to left wall, and
 // continue left wall following
 if(FrontWall())
 {
 tip90(right);
 delay(100);
 golw(50, 100, 0);
 delay(200);
 }
 }

 // After left wall has disappeared, go straight until there is a front wall
 go(40);
 while(!FrontWall());
 go(0);

 // Once a front wall is seen, turn left 90 degrees and orient parallel to right wall
 tip90(left);
 delay(100);
 orient_right();

 // Go straight out of room until there is a front wall
 gorw(50, 100, 0);
 while(!FrontWall() && RightWall());

62

 // If no front wall and no right wall, go straight until there is a front wall
 if(!FrontWall() && !RightWall())
 {
 go(40);
 while(!FrontWall());
 }
 go(0);

 // Turn left 90 degrees and orient parallel to right wall
 tip90(left);
 orient_right();
 }
 // Procedures for exiting rooms 3 and 4
 else
 {
 // Procedures for exiting room 3
 if(room == 3)
 {
 // Turn 45 degrees and go towards a wall

tip45(right);
delay(100);
go(30);

while((ADR2H < 80) && !FrontWall());

// If there is front wall, turn right 90 degrees and orient parallel to the left wall
if(FrontWall())
{
 tip90(right);
 delay(100);
 orient_left();
}

// If left fron sensor sees a wall, orient parallel to left wall
if(ADR2H >= 80)
 orient_left();

63

// Left wall follow until there is no left wall
golw(40, 100, 0);
while(ADR2H >= 50)
{
 // If there is a front wall, turn right 90 degrees and continue left wall following

 if(FrontWall())
 {
 tip90(right);
 delay(100);
 golw(40, 100, 0);
 delay(200);
 }
 }

 // After left wall has disappeared, go straight until there is a front wall
 go(40);
 while(!FrontWall());
 go(0);

 // Turn left 90 degrees and orient parallel to right wall
 tip90(left);
 delay(100);
 orient_right();

// Go straight out of room until there is a front wall
gorw(40, 100, 0);
while(!FrontWall());

// Turn left 90 degrees and orient parallel to the right wall
tip90(left);
delay(100);
orient_right();

 }

 // Procedures for exiting room 4
 else
 {

// Turn left 45 degrees and go towards a wall
tip45(left);
delay(100);
go(30);

while((ADR6H < 80) && !FrontWall());

64

// If there is a front wall, turn left 90 degrees and orient parallel to right wall
if(FrontWall())
{
 tip90(left);
 delay(100);
 orient_right();
}

// If right front sensor sees a wall, orient parallel to right wall
if(ADR2H >= 80)
 orient_right();

// Right wall follow until there is no right wall
gorw(30, 100, 0);
while(ADR6H >= 50)
{
 // If there is a front wall, turn left 90 degrees and continue right wall following

 if(FrontWall())
 {
 tip90(left);
 delay(100);
 gorw(30, 100, 0);
 delay(200);
 }
 }

 // Once right wall has disappeared, go straight until there is front wall
 go(30);
 while(!FrontWall());
 go(0);

 // Turn right 90 degrees and orient parallel to left wall
 tip90(right);
 delay(100);
 orient_left();

 // Go straight out of room until there is a front wall
 go(30);
 while(!FrontWall());

 // Turn right 90 degrees and orient parallel to left wall
 tip90(right);
 delay(100);
 orient_left();
 }
 }
 }
}

65

/* This function sets up flame follow */
void Flame_Follow()
{
 Set_Direction(forward); // Go forward
 while(!fire && !room_exited && AFlame())
 {
 cc = 5; // Set RTI condition code to 5

 if(FrontWall())
 {
 // If there is a front wall and a right wall, turn left 90 degrees and orient parallel to
 // right wall
 if(RightWall())
 {
 tip90(left);

orient_right();
 }
 // If there is a front wall and a left wall, turn rightt 90 degrees and orient parallel to
 // left wall
 else
 {
 tip90(right);

orient_left();
 }

 delay(100);
 Set_Direction(forward); // Go forward
 }
 }
}

66

/* This function extinguishes the flame */
void Flame_Out()
{
 if(fire)
 {
 // Turn fan on
 fan_on();
 delay(500);

 // Set desired speeds to 40
 ldesired_speed = 40;
 rdesired_speed = 40;
 // Set desired ticks to 1000
 desired_ticks = 1000;

 Set_Direction(right); // Turn right
 // Set initial duty cycles to the desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 lticks = 0; // Set left motor tick counter to 0
 cc = 4; // Set RTI condition code to 4

 // Turn in place right
 while(lticks <= desired_ticks)
 {
 if(lticks > desired_ticks - 1)
 break;
 }

 // Set desired speeds to 40
 ldesired_speed = 40;
 rdesired_speed = 40;
 // Set desired number of ticks to 2000
 desired_ticks = 2000;

 Set_Direction(left); // Turn left
 // Set duty cycles to desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 // Negate desired left motor speed
 ldesired_speed = -ldesired_speed;
 rticks = 0; // Reset right motor tick counter
 cc = 3; //Set RTI condition code to 3

67

 // Turn in place left
 while(rticks <= desired_ticks)
 {
 if(rticks > desired_ticks - 1)
 break;
 }

 // Set desired speeds to 40
 ldesired_speed = 40;
 rdesired_speed = 40;
 // Set desired number of ticks to 1000
 desired_ticks = 1000;

 Set_Direction(right); // Turn right
 // Set duty cycles to desired speeds
 Set_DTY((unsigned char)ldesired_speed, (unsigned char)rdesired_speed);

 // Negate desired right motor speed
 rdesired_speed = -rdesired_speed;
 lticks = 0; // Reset left motor tick counter
 cc = 4; // Set RTI condition code to 4

 // Turn in place right
 while(lticks <= desired_ticks)
 {
 if(lticks > desired_ticks - 1)
 break;
 }

 // Set duty cycles and desired speeds to 0
 Set_DTY(0, 0);
 ldesired_speed = 0;
 rdesired_speed = 0;

 // Turn fan off
 fan_off();
 delay(300);
 }
}

68

/* The RTI interrupt takes care of six functions based on the following condition codes:

 cc = 0 -- Closed-Loop Speed Control
 cc = 1 -- Closed-Loop Speed & Left Wall Follow Control
 cc = 2 -- Closed-Loop Speed & Right Wall Follow Control
 cc = 3 -- Turn Left in Place
 cc = 4 -- Turn Right in Place
 cc = 5 -- Flame Follow
*/
@interrupt void rti_isr()
{
 // Closed-loop speed control
 if(cc == 0)
 {
 // Calculate speed errors
 rserr = desired_speed - RSPD;
 lserr = desired_speed - LSPD;

 // Control equation for forward direction
 if(desired_speed >= 0)
 {
 rdty = rdty + rserr/4;
 ldty = ldty + lserr/4;
 }
 // Control equation for backwards direction
 else
 {
 rdty = rdty - rserr/4;
 ldty = ldty - lserr/4;
 }

 // Keep right motor duty cycle within 0 and 200
 if(rdty >= 199) rdty = 199;
 if(rdty <= 0) rdty = 0;

 // Keep left motor duty cycle within 0 and 200
 if(ldty >= 199) ldty = 199;
 if(ldty <= 0) ldty = 0;

 // Set duty cycle
 if(desired_speed == 0)
 Set_DTY(0, 0);
 else
 Set_DTY((unsigned char)ldty, (unsigned char)rdty);
 }

69

 // Closed-loop speed & left wall following
 if(cc == 1)
 {
 // Calculate speed error
 rserr = rdesired_speed - RSPD;
 lserr = ldesired_speed - LSPD;

 // Adjust the left and right duty cycles
 rdty = ((9*rdty)/10) + rserr/3;
 ldty = ((9*ldty)/10) + lserr/3;

 // Keep right motor duty cycle within 0 and 200
 if(rdty >= 199) rdty = 199;
 if(rdty <= 19) rdty = 19;

 // Keep left motor duty cycle within 0 and 200
 if(ldty >= 199) ldty = 199;
 if(ldty <= 19) ldty = 19;

 // Set duty cycles
 Set_DTY((unsigned char)ldty, (unsigned char)rdty);

 // When i = 3, make wall following adjustments
 if(i == 3)
 {
 // Calculate orientation error
 curr_orient = ADR3H - ADR2H;

 // Adjust desired speeds to correct orientation
 rdesired_speed = desired_speed - (2*(desired_orient - curr_orient))/4;
 ldesired_speed = desired_speed + (2*(desired_orient - curr_orient))/4;

 // If oriented somewhat parallel, adjust distance
 if(LInRange())
 {
 rdesired_speed = rdesired_speed + (2*(desired_dist - (ADR3H)))/4;
 ldesired_speed = ldesired_speed - (2*(desired_dist - (ADR3H)))/4;
 }

 i = 0; // Reset i
 }
 }

70

 // Closed-loop speed and right wall following
 if(cc == 2)
 {
 // Calculate speed error
 rserr = rdesired_speed - RSPD;
 lserr = ldesired_speed - LSPD;

 // Adjust duty cycles for speed error
 rdty = ((9*rdty)/10) + rserr;
 ldty = ((9*rdty)/10) + lserr;

 // Keep right motor duty cycle within 0 and 200
 if(rdty >= 199) rdty = 199;
 if(rdty <= 19) rdty = 19;

 // Keep left motor duty cycle within 0 and 200
 if(ldty >= 199) ldty = 199;
 if(ldty <= 19) ldty = 19;

 // Set duty cycles
 Set_DTY((unsigned char)ldty, (unsigned char)rdty);

 // When i = 3, make wall following adjustments
 if(i == 3)
 {
 // Calculate orientation error
 curr_orient = ADR6H - ADR7H;

 // Adjust desired speeds to correct orientation
 rdesired_speed = desired_speed - (2*(desired_orient - curr_orient))/4;
 ldesired_speed = desired_speed + (2*(desired_orient - curr_orient))/4;

 // If oriented somewhat parallel, adjust distance
 if(RInRange())
 {
 rdesired_speed = rdesired_speed - (3*(desired_dist - (ADR7H)))/8;
 ldesired_speed = ldesired_speed + (3*(desired_dist - (ADR7H)))/8;
 }

 i = 0; // Reset i
 }
 }

71

 // Closed-loop speed control left turn in place
 if(cc == 3)
 {
 // Calculate speed errors
 rserr = rdesired_speed - RSPD;
 lserr = ldesired_speed - LSPD;

 // Adjust duty cycles to correct speed
 rdty = PWDTY1 + rserr;
 ldty = PWDTY0 - lserr;

 // Keep right motor duty cycle within 0 and 200
 if(rdty >= 199) rdty = 199;
 if(rdty <= 19) rdty = 19;

 // Keep left motor duty cycle within 0 and 200
 if(ldty >= 199) ldty = 199;
 if(ldty <= 19) ldty = 19;

 // Set duty cycles
 Set_DTY((unsigned char)ldty, (unsigned char)rdty);

 // Count right motor ticks
 if(RCNT >= 0)
 rticks = rticks + RCNT;
 }

72

 // Closed-loop speed control right turn in place
 if(cc == 4)
 {
 // Calculate speed error
 rserr = rdesired_speed - RSPD;
 lserr = ldesired_speed - LSPD;

 // Adjust duty cycles to correct speed
 rdty = PWDTY1 - rserr;
 ldty = PWDTY0 + lserr;

 // Keep right motor duty cycle within 0 and 200
 if(rdty >= 199) rdty = 199;
 if(rdty <= 19) rdty = 19;

 // Keep left motor duty cycle within 0 and 200
 if(ldty >= 199) ldty = 199;
 if(ldty <= 19) ldty = 19;

 // Set duty cycle
 Set_DTY((unsigned char)ldty, (unsigned char)rdty);

 if(LCNT >= 0)
 lticks = lticks + LCNT;
 }

73

 // Flame Follow
 if(cc == 5)
 {
 // Calculate flame intensity and orientation to flame
 fsum = ADR4H + ADR5H;
 fdiff = ADR4H - ADR5H;

 // If left wall and flame is to the left, follow left wall at a distance of 80
 if((ADR2H > 80) && (fdiff > 0))
 {
 rdty = 50 + (1*(80 - ADR3H)/8);
 ldty = 50 - (1*(80 - ADR3H)/8);
 }
 // If right wall and flame is to the right, follow right wall at a distance of 80
 else if((ADR6H > 80) && (fdiff < 0))
 {
 rdty = 50 - (1*(80 - ADR7H)/8);
 ldty = 50 + (1*(80 - ADR7H)/8);
 }
 // If flame and no left or right wall, follow flame
 else
 {
 rdty = 50 + fdiff;
 ldty = 50 - fdiff;
 }

 // Keep left and right motor duty cycles within 0 and 200
 if (rdty > 199) rdty = 199;
 if (ldty > 199) ldty = 199;
 if (rdty < 0) rdty = 0;
 if (ldty < 0) ldty = 0;

 // Set duty cycle
 if(fire)
 Set_DTY(0, 0);
 else
 Set_DTY(ldty, rdty);

 // If there is a white surface and a flame, set fire variable to indicate that it is time to
 //out the flame
 if(WhiteSurface() && (fsum > 200))
 fire = 1;

74

 // If there is a white surface and no flame, then the robot has exited the room
 if(WhiteSurface() && (fsum < 200))
 room_exited = 1;
 }

 i++; // Increment i
 counter++; // Increment counter
 RTIFLG = 0x80; // Reset RTI flag
}

75

/* This is the navigations header file. It contains functions used to navigate through
 through the maze */

#include <functions.h>

/* This is the room 0 (home circle) navigation code. This code will return the robot to
 room 1 if the fire is out and it started from room 1, return it to room 3 if the fire is out
 and it started fromroom 3, or, otherwise, bring the robot to the center of the maze
 facing rooms 1 and 2. */
void room0()
{
 // Go to center of maze
 if(room_start != 1)
 {
 // Left wall follow until there is no left wall
 golw(100, 100, 0);
 delay(100);
 while(LeftWall());
 // Go straight until there is a front wall
 go(80);
 while(!FrontWall());

 // Turn left 90 degrees, facing towards rooms 1 and 2 if room started from is not room
 // 3. This is room 1 position.
 if(room_start != 3)
 {
 tip90(left);
 delay(100);
 orient_right();
 room = 1; // Set room = 1
 }

76

 // Return to room 3 if fire is out
 else
 {
 if(fireout)
 {
 tip90(right);
 delay(100);
 orient_left();
 // Left wall follow until there is a front wall
 golw(80, 100, 0);
 delay(100);
 while(!FrontWall());
 tip90(right);
 delay(100);
 orient_left();
 // Enter room 3 and stop
 golw(80, 100, 0);
 while(!WhiteSurface());
 delay(500);
 Set_DTY(0, 0);
 disableRTI();
 exit(0);
 }
 }
 }

 // Return to room 1
 else
 {
 if(fireout)
 {
 // Left wall follow into room 1 and stop
 golw(80, 100, 0);
 delay(500);
 while(!WhiteSurface());
 delay(500);
 Set_DTY(0, 0);
 disableRTI();
 exit(0);
 }
 }
}

77

/* This is room 1 navigation code. It will scan room 2 for a flame while it brings the robot
 to room 2 position, which is at the entrance of room 2 facing towards room 1. It will
 also return the robot to room 2 if the fire is out and the robot started from room 2. */
void room1()
{
 // Right wall follow until there is no right wall
 gorw(70, 110, 0);
 delay(400);
 while(RightWall());

 // Hamamatsu scan room 2
 if((room_start != 2) && !fireout)
 {
 goscan(); // Left wall follow hamamatsu scan
 // Go straight until there is a front wall
 go(60);
 while(!FrontWall());
 delay(50);
 // If no flame detected, scan in place
 if(!flamegh)
 {
 go(0);
 orient_left();
 delay(100);
 tip45(right); // Look into room 2
 Set_DTY(0, 0);
 Ham_Scan();
 }

 // Determine the existence of a flame
 if((flameh == 1) || (flamegh == 1))
 flame = 1;
 else
 flame = 0;
 }

 // If robot didn't start from room 2 and there is no flame, turn around
 if((room_start != 2) && !flame)
 {
 if(!fireout)
 {
 tip45(right);
 tip90(right);
 }

78

 else
 {
 go(40);
 while(!FrontWall());
 tip180();
 }
 delay(100);
 orient_right();
 }
 room = 2; // Set room = 2

 // Return to room 2
 if((room_start == 2) && fireout)
 {
 // Right wall follow until there is a front wall
 gorw(80, 100, 0);
 while(!FrontWall());
 tip90(right);
 delay(100);
 orient_left();
 // Left wall follow into room 2 and stop
 golw(80, 100, 0);
 delay(500);
 Set_DTY(0, 0);
 disableRTI();
 exit(0);
 }
}

/* This is the room 2 navigation code. It scans room 1 for a fire and then goes to either
 room 3 or room 4. If the robot started from room 3, this code will take it to room 4.
 Otherwise, the robot goes to room 3 */
void room2()
{
 // Right wall follow until there is no right wall
 gorw(40, 100, 0);
 delay(350);
 while(RightWall());

79

 // Return to room 1 if robot started from there and the fire is out
 if((room_start == 1) && fireout)
 {
 // Right wall follow into room 1 and stop
 gorw(50, 100, 0);
 delay(1500);
 Set_DTY(0, 0);
 disableRTI();
 exit(0);
 }

 // Hamamatsu scan room 1
 if((room_start != 1) && !fireout)
 {
 // Hammamatsu scan while left wall following
 goscan();
 // If no flame detected, scan in place
 if(!flamegh)
 {
 orient_left();
 delay(50);
 tip45(right); // Look into room 1
 Set_DTY(0, 0);
 Ham_Scan();
 }

 // Determine the existence of flame
 if((flameh == 1) || (flamegh == 1))
 flame = 1;
 else
 flame = 0;

 // If no flame turn left 45 degree to line up with left wall
 if(!flame)
 tip45(left);
 }

80

 if(flame)
 {
 if(flameh == 1)
 go(0);
 // If flame was detected during the goscan, left wall follow until there is a full left wall.
 // This is how the robot will know that it lined up at the entrance of room 1
 else
 {
 golw(40, 80, 0);
 while(!LeftWall());
 delay(300);
 }
 room = 1;
 }
 // If no flame, move on
 else
 {
 golw(80, 100, 0); // Left wall follow
 delay(800);

 // Go to room 3 position
 if(room_start != 3)
 {
 // Left wall follow until there is no left wall
 while(LeftWall());
 // Go straight a little bit and turn left 90 degrees
 go(60);
 delay(400);
 tip90(left);
 delay(100);
 // Go straight a little bit
 go(40);
 delay(400);
 // Left wall follw a little bit
 golw(60, 100, 0);
 delay(600);
 // Hamamatsu scan room 3
 goscan();
 // Go straight until there is a front wall
 go(60);
 while(!FrontWall());

 flame = flamegh;

81

 // If no flame turn around and set room = 3
 if(!flame)
 {
 tip180();
 delay(100);
 orient_right();
 }
 room = 3;
 }

 // Go to room 4 position if room start is 3
 else
 {
 // Left wall follow until there is no left wall
 while(LeftWall());
 // Go straight until there is a right wall
 go(80);
 while(!RightWall());
 // Right wall follow until there is no right wall
 gorw(80, 100, 0);
 delay(400);
 while(RightWall());
 // Go straight until there is a front wall
 go(80);
 while(!FrontWall());

 // Face room 4 and set room = 4
 tip90(right);
 delay(100);
 orient_left();
 room = 4;
 }
 }
}

82

/* This is the room 3 navigation code. It wil bring the robot to room 4 if it started from
 either room 1 or 2. It will return to room 4 if robot started from room 4 and the fire is
 out. If robot started from room 3, this will take the robot to room 1 position. */
void room3()
{
 // Right wall follow until there is no right wall
 gorw(40, 100, 0);
 delay(400);
 gorw(80, 100, 0);
 while(RightWall());
 // Go straight until there is a front wall
 go(60);
 while(!FrontWall());

 // Go to room 4 position if room start is 1 or 2
 if(room_start < 3)
 {
 tip90(left);
 delay(100);
 orient_right();
 // Right wall follow until there is no right wall
 gorw(60, 100, 0);
 delay(200);
 while(RightWall());
 // Left wall follow until there is a front wall
 golw(60, 100, 0);
 while(!FrontWall());
 // Face room 4 and set room = 4
 tip90(right);
 delay(100);
 orient_left();
 room = 4;
 }

 // Go towards center of maze
 else
 {
 // Face rooms 1 and 2
 tip90(right);
 delay(100);
 orient_left();
 // Left wall follow
 golw(60, 80, 0);
 delay(100);

83

 // Go to room 1 position if room start is not 4
 if(room_start != 4)
 {
 // Left wall follow until there is no left wall
 while(LeftWall());
 // Go straight until there is a right wall and set room = 1
 go(60);
 while(!RightWall());
 Set_DTY(0, 0);
 room = 1;
 }

 //Enter room 4 if fire is out
 else
 {
 //Left wall follow until there is no left wall
 golw(80, 100, 0);
 delay(1000);
 while(LeftWall());
 // Go straight until there is a front wall
 go(60);
 while(!FrontWall());

 // Return to room 4 if fire is out
 if(fireout)
 {
 // At home circle, face room 4
 tip90(left);
 delay(100);
 // Right wall follow for a little bit
 gorw(80, 80, 0);
 delay(500);
 // Left wall follow into room 4 and stop
 golw(80, 100, 0);
 delay(500);
 while(!WhiteSurface());
 delay(400);
 Set_DTY(0, 0);
 disableRTI();
 exit(0);
 }

84

 // At home circle, turn around and begin left wall follow navigation
 else
 {

tip180();
 delay(100);

orient_left();
 golw(80, 100, 0);

// Hallway navigation is complete
 hallway_nav_complete = 1;
 }
 }
 }
}

/* This is the room 4 navigation code. If starting from room 4, this take the robot to room
 1 position. Otherwise, this scans room 4 and then returns to home circle */
void room4()
{
 // Drive by room 4 if not started from there
 if(room_start != 4)
 {
 // Left wall follow for a little bit
 golw(80, 100, 0);
 delay(200);

 // Hammamatsu scan room 4 while wall following
 while(!flamegh && !RightWall() && !fireout)
 goscan();
 flame = flamegh;

 // If no flame, return to home circle
 if(!flamegh)
 {
 // Left wall follow until there is a front wall
 golw(90, 100, 0);
 while(!FrontWall());
 tip90(right); // Turn right
 delay(100);
 orient_left();

85

 // Left wall follow until there is a front wall
 golw(80, 100, 0);
 delay(200);
 while(!FrontWall());
 tip90(right); // Turn right
 delay(100);
 orient_left();
 Set_DTY(0, 0);
 // Robot is at home circle now. Set room = 0
 room = 0;
 if(room_start == 0)
 {

// Hallway navigation is compete
 hallway_nav_complete = 1;

// Exit if fire is out
 if(fireout)
 exit(0);
 }

 // If room start is 1, 2, or 3 and fire is not out, the hallway navigation is complete
 if(((room_start < 4) && (room_start != 0)) && !fireout)

hallway_nav_complete = 1;
 }
 }

 // If room start is 4, go to room 1 position
 else
 {
 // Right wall follow until there is a front wall
 gorw(80, 100, 0);
 while(!FrontWall());
 tip90(left); // Turn left
 delay(100);
 orient_right();
 // Right wall follow until there is no right wall
 gorw(80, 90, 0);
 delay(100);
 while(RightWall());
 // Go straight until there is a left wall
 go(60);
 while(!LeftWall());
 // Left wall follow until there is no left wall
 golw(60, 80, 0);
 delay(100);
 while(LeftWall());

86

 // Go straight until there is a right wall and
 // set room = 1
 go(60);
 while(!RightWall());
 Set_DTY(0, 0);
 room = 1;
 }
}

/* This function performs the hallway navigation to find and extinguish the flame and
 return home */
void Hallway_Nav()
{
 fireout = 0; // Initialize fireout

 // Run the proper room navigation codes until the hallway navigation is complete
 while(hallway_nav_complete == 0)
 {
 if((room == 0) && !flame)
 room0();
 if((room == 1) && !flame)
 room1();
 if((room == 2) && !flame)
 room2();
 if((room == 3) && !flame)
 room3();
 if((room == 4) && !flame)
 room4();

 // If flame has been detected, enter room
 if(flame)
 {
 // Procedures for entering rooms 1, 2, and 3 and putting out the flame
 if(room != 4)
 {

wlc = 0;
counter = 0;
tip90(right); // Turn right

 delay(100);
// If room is 2 or 3, orient parallel to left wall
if((room == 2) || (room == 3))
 orient_left();

87

// If room = 1, go straight until robot has crossed the white line or counter reaches
 // 150

if(room == 1)
{
 go(40);
 while((wlc == 0) && (counter < 150))
 Count_Whitelines();
}

counter = 0; // Reset RTI counter

// Left wall follow until robot has crossed a white line or counter reaches 150
 golw(40, 100, 0);
 while((wlc == 0) && (counter < 150))

 Count_Whitelines();

 // Find flame
 while(!room_exited && !fire)
 {
 // Left wall follow while there is no flame
 golw(80, 100, 0);
 while(!AFlame())
 {

 // If there is a front wall, turn right, orient parallel to left wall, and continue left
 // wall following

 if(FrontWall())
 {

 tip90(right);
 delay(100);

 orient_left();
 golw(80, 100, 0);
 }

 }
 // If there is a flame, follow it
 Flame_Follow();
 }

88

 // Blow out the fire
 while(fire)
 {
 go(20);
 delay(150);
 Flame_Out();
 go(0);
 fsum = ADR4H + ADR5H;
 // Check if fire still exists
 if(fsum < 100)
 {
 flame = 0;
 flamegh = 0;
 flameh = 0;
 fire = 0;
 fireout = 1;
 }
 }

 // Exit room
 if(room_exited)
 flame = 0;
 else
 Exit_Room();
 }

 // Procedures for entering room 4 and putting out the flame
 else
 {
 // Right wall follow into room 4 and then make a 45 degree right turn
 gorw(40, 80, 0);
 delay(800);
 tip45(right);
 // Go straight until a white line has been seen or the counter has reached 100
 go(60);
 counter = 0;
 wlc = 0;
 while((counter < 100) && (wlc == 0))
 Count_Whitelines();

89

 // Right wall follow until a white line has been seen
 gorw(40, 100, 0);
 while(wlc == 0)
 Count_Whitelines();

 while(!room_exited && !fire)
 {
 // Right wall follow while there is no flame
 gorw(60, 100, 0);
 while(!AFlame())
 {
 // If there is a front wall, turn left, orient parallel to right wall, and continue right
 // wall following
 if(FrontWall())
 {
 tip90(left);
 delay(100);

 orient_right();
 gorw(60, 100, 0);
}

 }
 // If there is a flame, follow it
 Flame_Follow();
 }

 // Blow out fire until it is out
 while(fire)
 {
 go(20);
 delay(150);
 Flame_Out();
 go(0);
 fsum = ADR4H + ADR5H;
 // Check if fire is out
 if(fsum < 100)
 {
 flame = 0;
 flamegh = 0;
 flameh = 0;
 fire = 0;
 fireout = 1;
 }
 }

90

 // Exit room
 if(room_exited)
 flame = 0;
 else
 Exit_Room();
 }
 }
 }
}

/* This is the left wall follow navigation code. This code will left wall follow through the
 entire maze, entering every room, to find the candle */
void LWF_Nav()
{
 wlc = 0;
 golw(70, 100, 0); // Left wall follow
 while(!fire)
 {
 while(!AFlame())
 {
 Count_Whitelines();
 // If there is a front wall, turn right, orient parallel to left wall, and continue left wall
 // following
 if(FrontWall())
 {
 tip90(right);
 delay(100);
 orient_left();
 golw(70, 100, 0);
 }
 // If white line counter equals 7 and a white surface has been detected, robot is at the
 // home circle. Turn around and left wall follow into room 4
 if((wlc == 7) && WhiteSurface())
 {
 tip180();
 orient_right();
 golw(70, 100, 0);
 }
 // If over 10 whitelines have been counter, give up
 if(wlc >= 10)
 error();
 }
 // If in a room and there is a flame, follow it
 if((wlc != 0) && AFlame())
 Flame_Follow();
 }

91

 room = wlc/2; // Determine room
 // Blow out fire until it is out
 while(fire)
 {
 go(20);
 delay(150);
 Flame_Out();
 go(0);
 fsum = ADR4H + ADR5H;
 // Check if fire is out
 if(fsum < 100)
 {
 flame = 0;
 flamegh = 0;
 flameh = 0;
 fire = 0;
 fireout = 1;
 }
 }
 Exit_Room();
 hallway_nav_complete = 0;
}

92

/* This is the main program file */

#include <setup.h>
#include <navigation.h>

main()
{
 INTCR &= ~0x60; // Disable IRQ
 PWM_setup(); // Setup PWM
 LATCH_setup(); // Setup latch
 HB_setup(); // Setup H-bridge
 AD_setup(); // Setup A/D ports
 DLC_setup(); // Setup Port DLC
 HAM_setup(); // Setup hamamatsu

 Wait_for_Tone();
 delay(250);
 enableRTI();

 // Scan and exit room
 Scan_Room();
 if(room_start != 0)
 Exit_Room();
 Set_DTY(0, 0);
 disableRTI();

 enableRTI();
 // If room start has been determined, begin hallway navigation
 if(room_start != 128)
 {
 Hallway_Nav();
 // If hallway navigation is complete and the fire is not out, begin left wall following
 if(hallway_nav_complete && !fireout)
 {
 LWF_Nav();
 Hallway_Nav();
 }
 }
 // Left wall follow through maze if room start was not correctly determined
 else
 LWF_Nav();
}

