Remote Communications

Robot B

George Henckel
Nathan Thomas
Chris Wilcox

EE 382

Junior Design
Dr. Rison and Dr. Wedeward
5 May 2002

Communications
Robot B

Abstract

A wireless communications link and base station were developed to monitor and
control an outdoor golfing robot. To implement such a system we used FM transceivers
with a serial interface to send the data between the base station and the robot. A
graphical user interface (GUI) was created to allow input of the golf ball and hole global
positioning satellite (GPS) coordinates. When started, the GUI would send GPS
coordinates and a start command to the robot. After the robot had started its task, our
system would start updating the GUI with actual coordinates of the robot and its current

status.

Table of Contents

Abstract
Introduction
The Solution

Board Design and Layout

Format of Data

LabVIEW

o The Graphical User Interface (GUI)
@ Debugging the GUI

o) Behind the Scenes

e Brief Description of the Functions
Microcontroller Code

o) Serial Communications Interface
@ Serial Peripheral Interface

o) Additional Function

Simulation of Navigation

Power Requirements
Final Budget

Future Plans
Conclusion
References

0 AN =

11

13
14
14
15
16
16
17
18
19
19
20

Communications
Robot B

1

List of Figures

Figure 1: Block Diagram

Figure 2: Dimensions of the Robot Transceiver Module

Figure 3: Board layout connecting the Transceiver and 68HC12
Figure 4: Menu Byte

Figure 5: Status Byte

Figure 6: Progress Byte

Figure 7: LabVIEW Graphical User Interface

Figure 8: Debugging Portion of the Interface

List of Tables

Table 1: Data Format from Remote Station
Table 2: Data Format from Navigation System
Table 3: Data Format to the Remote Station
Table 4: Final Budget

Appendices

Appendix A: Wiring Diagram

Appendix B: Transceiver Data Sheets

Appendix C: LabVIEW Code

Appendix D: Visa Error Codes for Debugging Purposes
Appendix E: Micro-controller Code

Appendix F: Navigation Simulation Code

Appendix G: GUI instructions

—

— O IO DN WD

(e BN e V)]

Communications
Robot B

i1

Introduction

As juniors at New Mexico Tech, we have taken courses that have prepared us to
attack a “real world” electrical engineering task. Introduction to Design, EE382, is a
class designed to have students use the skills and knowledge acquired from the last few
years of study in Electrical Engineering. The junior design project had been the same for
quite some time, and the professors decided that it was time for a change. This year’s
project was to be an autonomous golfing robot.

The robot’s primary objective was to use GPS to find a golf ball, pick it up, take
it to a hole and drop it in. The robot was broken up into four main subsystems, the
chassis, the navigation, the ball/hole location, and the remote communications system.

Our task was to design the remote communication system. When we began this
project, we researched many ideas and came up with a solution that we believed would be
feasible. Each of us learned a great deal about teamwork and how it is necessary to
successfully complete a difficult task. With the experience that we now have gained
from this project, it is conceivable that each of us can face a future task similar to this and
be successful.

We designed the remote communication station using the software package
LabVIEW, commercial transceivers from ABACOM Technologies and the 68HC12
Micro-controller from Motorola to design the GUI, wireless transmission system and to
interface with the navigation system of the robot, respectively.

All of the teams worked together to get each subsystem integrated. Given the
intensity of the project, we believe that the project was a great success, even though the

overall robot failed at completing its ultimate task.

The Solution

We used the DPC-64-RS232 transceiver module from ABACOM Technologies
along with a GUI created in LabVIEW for the base station because it was already set up
to interface with any PC through the serial port. We also used the DPC-64-CTL
transceiver module from ABACOM Technologies for its compatibility with the RS232
module and to interface with the 68HC12. We used the 68HC12’s serial communications

subsystems to interface with the transceiver and the navigation subsystem of the robot.

H To

Mavigation

Figure 1: Block Diagram of the Remote Station and Subsystem on Robot.

Board Design and Layout

We designed the circuit board to have the robot transceiver, DPC-64-CTL,
connect easily to the 68HC12. We maximized the ground plane on our circuit board, as
seen in Figure 3, to minimize voltage spikes and other noise problems that can occur in
radio frequency circuitry. A complete wiring diagram can be found in Appendix A.

The “Send Data” line, pin 14, was tied to 5 VDC. With this configuration, the

transceiver will automatically output the data that was received from the base station

transceiver, DPC-64-RS232, to “Data Output” line, pin 16. This configuration was set up
to be received by the 68HC12’s Serial Communications Interface (SCI). The “Data
Input” line, pin 18, was automatically configured to receive the data asynchronously from
the SCI subsystem on the 6§HC12 and transmit it to the DPC-64-RS232, the base station
connected to a PC. The “Test” line, pin 9, was connected to a normally open switch
connected to the ground plane. This test line was used in the initial stages of our design
to test the wireless link between the two transceivers. The “Antenna” line, pin 21, was
connected to a simple %4 wave whip antenna. The “Received Signal Strength Indication”
(RSSI), pin 1, outputted a voltage proportional to the signal strength received. Some
problems arose when we tried to interface with this. The line would set a proportional
voltage out, but we could not read it in time to measure what it was with the A/D
converter because our data transmissions took so little time. The reason for this was
believed to be because we did not transmit continuously, so an accurate voltage could
never really be read. We stopped looking into this issue and put it at the bottom of our

priority list and we simply did not have time to get back to it.

&1
Figure 2: Size and dimensions of the DPC-64-CTL Transceiver Module.

009000000006

n George Henckel
Robot B Communications jChristopher Wilcox
Nathan Thomas

Figure 3: Board layout connecting the Transceiver and 68HC12

Format of Data

The 68HC12 contains several 8-bit data registers. We use these to store the
different types of data that we were planning to send and receive. From the base station,
we received a packet of twenty-one bytes. The format of this packet can be found in
Table 1. The “Menu Byte”, the first byte, was the byte we used as a command for the
68HCI12 from the remote station. The format and functions of the “Menu Byte” can be
found in Figure 4. If it was a 0x01 then the 68HC12 would be instructed to send twenty
bytes to the navigation system. Those twenty bytes would be the remaining twenty bytes
in the received string. If it was a 0x02, the 68HC12 would continue to send and receive
to and from the remote station. If it was a 0x04, then the 68HC12 would set a pin high

indicating to the navigation system to have the robot stop.

Byte Data

Number

0 Menu Byte

1 Ball Latitude Degree

2 Ball Latitude Minute

3 Ball Latitude Second

4 Ball Latitude Second 10" and 100" decimal

5 Ball Latitude Second 1000™ and 10000™ decimal
6 Ball Longitude Degree

7 Ball Longitude Minute

8 Ball Longitude Second

9 Ball Longitude Second 10™ and 100" decimal

10 Ball Longitude Second 1000™ and 10000™ decimal
11 Hole Latitude Degree

12 Hole Latitude Minute

13 Hole Latitude Second

14 Hole Latitude Second 10" and 100" decimal

15 Hole Latitude Second 1000™ and 10000™ decimal
16 Hole Longitude Degree

17 Hole Longitude Minute

18 Hole Longitude Second

19 Hole Longitude Second 10™ and 100" decimal
20 Hole Longitude Second 1000™ and 10000™ decimal

Table 1: Data sent to the HC12, then the navigation system.

Note: Initially, Navigation told us they wanted accuracy to 4 decimal places of the
Second. We later discovered that we could never really get that accurate from
the GPS system.

CONT

INIT

Figure 4: The Structure of the Menu Byte is as follows:

Note: The Menu Byte is not sent to the navigation system, it tells the HC12 on the robot

INIT — Send the Ball/Hole Position Data to the navigation system

CONT — Do Nothing/Continue Searching
STOP — Stop all Processes

when to send GPS data, tell the navigation system to continue searching, or to stop.

Using the 68HC12’s Serial Peripheral Interface (SPI) interrupt, a packet of nine

bytes were received from the navigation system, which can be found in Table 2. These

nine bytes were the “Status Byte” and the seconds and four decimals places of seconds of
the robot’s location. The following two bytes were the direction in degrees from North.
Once received, this data was resorted in the transmission string and sent back to the
remote station. The “Status Byte” from the navigation system told us what the robot was
doing. If it was a 0x01, then we were to expect eight more bytes for the robot’s location
and the direction from North. If it was a 0x02, then the robot was not moving and was
searching for the ball/hole with the cameras. If it was a 0x04, then the ball/hole was
found. We manipulated the “Progress Byte” with this data as we received it to tell the

remote station exactly where in the task the robot was.

Byte Data

Number

0 Status Byte

1 Robot Latitude Second

2 Robot Latitude Second 10™ and 100™ decimal

3 Robot Latitude Second 1000™ and 10000™ decimal
4 Robot Longitude Second

5 Robot Longitude Second 10" and 100™ decimal

6 Robot Longitude Second 1000™ and 10000™ decimal
7 Direction 1

8 Direction 2

Table 2: Data received from the navigation system.

Figure S: The Structure of the Status Byte is as follows:
GPS — Searching for Ball/Hole with GPS.
SEN — Searching for Ball/Hole with Sensors.
CMPT — Task completed.

The format of the packet of fourteen bytes sent back to the remote station can be
found in Table 3. The “Progress Byte” was set up as such to let the remote station know

exactly where the robot was in its task. The format of the “Progress Byte” can be found

in Figure 6. If it was a 0x01, then the robot was looking for the ball with GPS. If a 0x02,
it was looking for the ball with the cameras. If a 0x04, it had the ball. If a 0x08, it would
be searching for the Hole with GPS. If a 0x10, it would be searching for the hole with
the cameras. If a 0x20, it found the hole. If a 0x40, then the ball was dropped in the

hole and the task was completed.

Byte Data

Number

1 Robot Latitude Degree

2 Robot Latitude Minute

3 Robot Latitude Second

4 Robot Latitude Second 10" and 100™ decimal

5 Robot Latitude Second 1000™ and 10000™ decimal
6 Robot Longitude Degree

7 Robot Longitude Minute

8 Robot Longitude Second

9 Robot Longitude Second 10™ and 100™ decimal

10 Robot Longitude Second 1000™ and 10000™ decimal
11 Direction 1

12 Direction 2

13 Progress Byte

14 RSSI

Table 3: Data sent to the remote station.

-BDFIP FNDH | HSEN | HGPS | HAVEB | BSEN | BGPS

Figure 6: The structure of the Progress Byte is as follows:
BGPS — Looking for the Ball with GPS.
BSEN — Looking for the Ball with the Sensors/Camera.
HAVB — The Robot has the Ball.
HGPS — Looking for the Hole with GPS.
HSEN — Looking for the Hole with Sensors/Camera.
FNDH — The Robot has found the Hole.
BDRP — The Ball has been dropped.

The RSSI was the received signal strength read by the analog-to-digital converter

on the 68HC12, which is currently not being used by the remote station.

LabVIEW

LabVIEW proved to be a very efficient way to go. It made the implementation of
the base station as simple as possible. The GUI that it provided also proved to be easy to
use and quite appealing to most users. The only function it seems to lack is background
music of a golfer swinging the club and him yelling “four!”

Like any complex program there are many functions, .vi’s, within the LabVIEW
GUI. The final program has a total of seven functions and the main program. Each of
these functions will be described later in the report. Some LabVIEW experience may be
necessary to fully understand the descriptions of the code as well as the code itself.
Please keep in mind that like any programming language there may be easier ways to
implement the code. However, the only thing that matters is that it works. A hardcopy of
the code is in appendix B. However, the electronic copy will be much easier to “thumb
through.” There is also a specific set of instructions on using the GUI for any user to

learn how to use it within minutes in Appendix G.

THE LabVIEW Graphical User Interface

[robot_communication. vi

Fle Edt Operate Tools Browse Window Help

O[] [T |

1K

34 4 18 1234 34 4 46 1234

106 57 44 1234 106 57 52 1234

ll“igure 7: The LabVIEW GUI

Starting with the main function, “robot communications.vi”; the front panel is the
GUI. Open this program to get started. The GUI is where the user can input information
and get information back from the robot. First off, the user will be able to decide which
port to hook the transceiver up to (i.e. COM1, COM2 ...). LabVIEW will list all possible
ports in a drop down menu on the GUI. However, the names that LabVIEW supplies for
the ports are not labeled very well, but they are manageable; ASRLI::INSTR is
equivalent to COM1; ASRL2::INSTR is equivalent to COM2 and so forth. Secondly, the
user needs to tell the robot the GPS coordinates of the ball and hole. Default values are
displayed in the ball and hole coordinate boxes in their correct format which is also

displayed below the input boxes. The format is very important for parsing of the input

10

strings. The user will need to make sure that the Go/Stop switch is in the “Go” position
before running the program. This switch will only be used during the need for an
emergency stop when it should be pulled down. After the robot is powered up, the initial
state of the robot will be to sit and wait for a command from the LabVIEW code.
Starting the program will send this initial command and will initialize the robot to find
the ball at the current location indicated in the LabVIEW code. To start the program the
user needs to click on the arrow icon at the top left of the LabVIEW windows in the
toolbar. The user will be able to quickly view the robot coordinates given in degrees,
minutes, seconds, and decimals of seconds. The direction will be displayed on compass
with North facing towards the top of the screen. The compass will display the direction
in degrees from North (i.e. 90° is East). The progress bar at the top of the screen displays
the current activity of the robot. There are seven “lights” that indicate that the robot is
looking for the golf ball with GPS, looking for the golf ball with sensors or cameras,
retrieved the ball, looking for hole with GPS, looking for hole with sensors or cameras,
found hole, and ball dropped. The user will also be able to see where the robot is in
reference to the ball and hole on a graph. The graph is very flexible because it is auto
adjusting to the range needed to display the ball, hole, and robot. Finally, the “Task

Completed” light will light up with the robot has finished its task.

11

Debugging with the GUI

B! robot_communication.vi

Fle Edt Operate Tools Browse Window Help

[o1] o] [-]

l:“gure 8: Debugging Portion of the Interface

Out of sight of the main GUI screen, the user can scroll up and see more
information. This information was used for debugging and left in the final version of the
code in case the user encounters any problems while using the product. There are five
displays for errors each checking for errors in different places of the code. A quick way
to check for errors is to look at the status box in each of the error displays; a green check
means everything is fine and a red x means that there is an error. If there is an error, the
user can look up the error code. The error codes are definitions of the error; they are
located in the Appendix D as well as in the LabVIEW help. The most common problems

have been listed below each of the error displays in the GUI and the codes should never

12

have to be looked up. The best way to fix the problem has been listed under each error as
well.

Hex read and write strings as well as the ASCII read and write strings that are
actually sent by the transceivers are also located in the GUI above the main panel. The
user can also see how many times the program has sent data to the robot. The last thing
that is available is ball and hole latitude and longitude coordinates in degree with
decimals for the plotting of the values.

LABVIEW - Behind the Scenes

Behind the scenes gets a little scarier; especially if you are unfamiliar with
LabVIEW. However, most users will never have the option to even see the actual code.
There are two electronic copies of the code. The first copy is not editable; the diagram
(code) is not even accessible to the user. The second copy will include the diagrams so
that the “code” can be viewed or edited in LabVIEW by clicking ctrl + E or simply going
to the toolbar and clicking on “window” and then “show diagram”. The code is pretty
well commented and shouldn’t need any more explanation for anyone who has some
experience with LabVIEW.

A Brief Description of the Functions

Asciitohex.vi: This function converts the string that the transceiver receives from ASCII
text to a hexadecimal string. The function will only work the fourteen bytes that we
are currently using but can be easily modified to convert more bytes. See the

comments in the code to determine how to do this.

Coordtodecandhex.vi: This function converts the input string from the GUI into

formatted hex data to be added to the string that is transmitted to the robot. The

13

function will also convert the coordinates into a fractional number of degrees to be
displayed on the graph. This function is used four times in the main function when

converting ball and hole, latitude and longitude data.

Numtohex.vi: This function is simple. It takes the Coordtodecandhex.vi function and
implements it four times; once for each of the latitude and longitude coordinates for

the ball and hole.

Hex String to Binary.vi: This function is only used twice but is very important. This
converts one hex digit, four bits, in a binary Boolean array. This is used to decipher

the progress/status byte.

Hextoascii.vi: This function changes the hex output into ASCII output that the
transceiver can handle. It is only set up to covert the twenty-one bytes that are
needed. More bytes can be easily added, see LabVIEW code for details on how to do

this.

Hextonum.vi: This is definitely the most complicated and messiest function that was
created besides the main function. This function filters through all of the incoming
data and translates the hex data into information that the GUI will use. The first ten
bytes received by the transceiver are latitude and longitude byes of the robot. The
function will convert the incoming hex data into a formatted string to display the
coordinates of the robot on the GUI as well as a decimal number of degrees for the
graph. The next two bytes are the direction of the robot. In the first byte of the
direction we only use one bit. If it is a one we add 255 degrees to the second byte
otherwise the heading (degrees from North clockwise) will be the second byte. The

next byte is the progress byte which tells us what the robot is currently doing. The

14

last byte is not currently being used. We had planned on using a signal strength
meter, RSSI, which we could not get working due to timing issues with the 68HC12.

The byte was left there for easy implementation in the future.

Serial Read with Timeout.vi: This function was a LabVIEW example and is very
simple. It simply adds a timeout on the serial read so that there is sufficient time for

the base station to wait for the robot to send the data.

Microcontroller Code
The microcontroller code performs three main functions: send/receive with the
wireless transceiver, send/receive with the navigation module, and directing information
between the wireless transmitter and the navigation module. Experience with
programming a 68HC12 microcontroller may be necessary to fully understand the code.
Serial Communications Interface: The 68HC12 SCI subsystem was used to talk with
the wireless transceiver. SCI is an asynchronous communications device that works
with both TTL and RS232 signals. The SCI port setup registers define baud rate,
character format, enable/disable transmitter and/or receiver, and enable interrupts.

The SCI subsystem was setup to run at 9600 baud, normal mode, 8-bit operation,
no parity, no interrupts, and enabled the transmitter and receiver. The character
format used was one start bit, eight data bits, and one stop bit. Receiving and
transmitting data to and from the wireless transceiver involved loading data to the
SCODRL data register, waiting and storing data from the SCODRL register.

Data to be transmitted was written to the SCODRL register then the 68HC12
waited for the “Transmitted Data Empty Flag” to be set. This was repeated for every

byte of data sent to the wireless transceiver. To receive from the wireless transceiver,

15

the 68HC12 had to wait for the Received Data Empty Flag to be set and then stored
the contents of SCODRL register in memory.

Serial Peripheral Interface: The SPI subsystem was used to talk to the navigation
system. The SPI is a synchronous communications tool. Ball and hole locations
would be sent to the navigation system. The navigation system would send back the
robots’ location and direction

The communications system was setup as a slave for SPI. The SPI was set for
normal operation, most significant bit first, slave mode, enable interrupts and enable
the SPI subsystem. To send data to the master requires coordination. Data to be sent
gets put in the SPODR data register then a READY line is set high so the master, the
navigation system, knows the slave is ready to send. The master then puts data in its
SPODR register and selects the slave to start the data transfer. The slave waits for the
slave select to go low and then sets its READY line back low signaling it is not ready
to send new data. The slave then waits for the slave select line to go high when the
current data has been transmitted. The SPODR register is read to clear the SPIF flag
and is ready for the next byte. This process repeats until all the data has been sent.
The READY line is used for “handshaking” so the master and slave can synchronize
with each other.

Receiving data does not require “handshaking”. Interrupts were used so data
could be acquired at anytime to keep the communications system from waiting for the
navigation system to send data. The interrupts would occur after a single byte of
information had been sent by the master to the slave and the SPIF flag been set. The

slave checked the SPIF flag and then read SPODR register and stored the byte. The

16

first byte of information sent is checked to see if it is 0x02 or 0x04. If it is either of
these values then no more data will be sent by the navigation system. The 0x02
means that the ball/hole location system is looking for the ball. A 0x04 means the
ball has been found/captured or the ball has been put in the hole. The meaning is
determined on the number of times the value has been received by the communication
system. An example would be receiving 0x04 a second time would indicate the ball
has been put in the hole.

Additional Functions: The rest of the code deals with data formatting between the
navigation system and remote station. Two different formats were used one for the
navigation system and another for the remote station. This section of the code just
transferred on data format to another data format.

An assumption was made that the golf course would not have a change in
minutes. Instead of sending the entire GPS coordinates the navigation system sent
only the seconds of the GPS coordinates of the robot. To account for this the
communications system records the degrees and minutes of the ball and hole,
assuming they are the same, and uses those as the degrees and minutes for the robot.

Simulation of Navigation

In order to complete our design, it was necessary for us to write a simple program

that would simulate the navigation system’s 68HC12 by sending our 68HC12 sample

calculations of the robot’s location and direction from North. In the SPI subsystem of the
68HC12, the slave sending data to the master can be tricky. We needed a Ready Line
independent of the SPI subsystem to tell the master to select us and start the data transfer.

The code that we used to simulate the Navigation’s 68HC12 is in Appendix F. A

17

problem arose between the master and slave in which data would periodically appear out
of order or shifted in order. With more time, a solution to this issue would be found.
Power Requirements

The power required from the chassis was 5 VDC for each of our devices with 20
mA for the transceiver and around 50 mA for the 68HC12. This was a total of about 350
mW that we needed to power our devices, which was well within the range of operation
that the chassis allotted for us. As for the device connected to the PC, a 9V battery was
used to the supplied connection.

Final Budget

The budget turned out to be nearly exactly as expected. It is shown here that we
came in under budget. However, in reality, we would have been over budget; we made a
rookie mistake and did not take into account the shipping and handling costs for the
ordered parts. We were lucky enough to receive a student discount from ABACOM
technologies which made up for the difference. The following table contains a list of

parts purchased and their expenses.

18

Description Estimated Actual

Expense’s Expense’s
Transceiver for Robot $160 $143.10
Antenna for Robot $11 $9.72
Transceiver for Computer $180 $160.98
Shipping and Handling Misc. $30.00
3 * 9 Volt Batteries Misc. $5.58
Push Button Switch Misc. $4.00
2 * DB9 Connectors Misc. $7.04
16 Pin Wire wrap Socket Misc. 1.50
Risers for Micro-controller Misc. 2.00
Total costs $400 $363.92
Total replication costs $600

Table 4: Final Budget

The total replication cost seems quite high. However, personal micro-controllers where
used and the pc-board was donated. We also included the student discount costs in the

replication budget as well.

Overall, we felt as if our choice in the transceivers that we purchased were worth
the money. They allowed for the best implantation that we could expect. If we had it to

do all over again we still purchase the same components.
Future Plans

If we had additional time we would include a case for both the base station and

the robot. We would also have continued working with RSSI to display the signal

19

strength on the GUI. Finally and most importantly we would have fixed the interfacing
problem between the communication and navigation systems.
Conclusion

We designed a functional subsystem for the robot. Initially the project presented
a problem that we did not know how to implement. After researching various
possibilities of wireless communications a solution was found. It was a practical solution
to the problem which worked quite nicely. We are proud to announce that our task has

been completed and are very pleased with the results that we came up with.

20

References

Abacom Technologies. Spring 2002. <http://www.abacom-tech.com>.

Digi-Key Corporation. Spring 2002. <http://www.digi-key.com>.

LabVIEW Help File.

Motorola Reference Manual 68HC912B32. Motorola INC. 1997.

Rison, William. Electrical Engineering Dept., New Mexico Institute of Mining and

Technology. Spring 2002 <http://www.ee.nmt.edu/~rison>.

21

Appendix
A

Wiring Diagram

12
13
14
DPC-64-CTL 1§
16
17
18
19
20
21
22

-k ALY O = G AN B RS

=

HENEEEREE

5
GMD {0 V)

Antenna to DPC.64.R5232

To Havigation:

IS0

MO

SCLK

55

Ready

Critical Stop

PS50
Ps1
FS2
PS3
PS4
P35
P56
PSY

HC12

Papg

Fa
Pal

VCC
VoD

F+5 W
L GND (0 V)

Appendix
B

ABACOM

TECHNOLOGIES

DPC-64-RS232 Transceiver Module

Introduction

The DPC-64-RS232 transceiver module provides a transparent serial link between two host
devices, where packets of up to 64 bytes of data may be transceived. All data encoding, decoding
and error checking is performed by the DPC-64-RS232 leaving nothing more for the host to do,
other than sending data in x.8.N.1 serial format to the DPC. The serial data sent by the host to
the DPC is automatically encoded and packetized and then transmitted over the air to the
receiving DPC.

Upon receipt of the radio data transmission, the DPC will decode the data, perform an error check
and output the original data to the receiving host.

Power Supply

Although the operating supply range is from 7.5vVdc to 15Vdc, 20mA, the DPC is supplied
standard with a 9V battery connector — alternative power sources within range may of course be
used. Polarity should be observed. As a protective measure for the host equipment, we
recommend applying power to the DPC only after it has been connected to the host.

Serial interface

The DPC-64-RS232 transceiver implements a standard serial interface and is configured as a
DTE.Connection to, for example, a personal computer COM port can be made using a standard
DB9 connector serial extension cable having a one male and one female connector.

ABACOM Technologies 1
- 32 Blair Athol Crescent - Etobicoke - ON - M9A 1X5 - Canada - Tel +416-236-3858 - Fax +416-236-8866 -

A four wire interface is used by implementing TxD, RxD, GND and CTS. The CTS flow control
line is available for users who wish to transmit more than 64 bytes. Under this condition, when the
DPC has received 64 bytes, the DPC will signal the host to pause sending data allowing it to
transmit the 64 bytes of data to the receiving DPC. Once the DPC has transmitted the data, the
CTS flow control line will toggle, allowing the DPC to receive the next 64 bytes of data from the
host.

The host terminal should be set to 9600*, 8, N, 1 and flow control should be set to ON
(*substitute for other data rates)

The flow control line can be ignored if the total data to be transmitted is less than 64 bytes.

No flow control is used when uploading the received data from the DPC to the receiving host. The
relevant flow control lines have been looped back on the DPC.

Test Mode

The DPC features a test mode which is very useful to quickly test the integrity of the RF link.
When the test button is pressed, the DPC will transmit an internally generated test message to
the receiving DPC. The received test message will be displayed on the receiving host terminal
screen when running a terminal program, for example.

Note: For volume applications, the content of the preset message can be customized if required.

Specifications

Operating Temperature -10 to +55°C

Supply Voltage 7.5V - 15Vdc

Supply Current 20mA transmit or receive

Data Rates A version 1200bps 2MHz crystal

Data Rates B version 2400bps 4AMHz crystal

Data Rates C version 4800bps 8MHz crystal

Data Rates D version 9600bps 16MHz crystal

RF Output Power 0dBm typical

Sensitivity -107dBm typical

RF stability + - 100KHz of centre frequency
Deviation 25KHz typical

RS-232 interface

TxD, RxD, GND, CTS

CTS only for transmit mode

RS-232 protocol

X, 8,N,1

flow control used

Max. bytes per transmission 64

RF i/o impedance 50W for alternative external antenna
Antenna Y, wave wire

Range - open field up to 500ft with ¥ wave antenna
Dimensions 83.5 x 53 x 15mm excluding DB9 connector

ABACOM Technologies

- 32 Blair Athol Crescent - Etobicoke - ON - M9A 1X5 - Canada - Tel +416-236-3858 - Fax +416-236-8866 -

ABACOM

TECHNOLOGIES

DPC-64-CTL Intelligent RF Transceiver Module

The extremely versatile DPC-64-CTL RF intelligent transceiver modules may be interfaced directly to any CMOS/
TTL serial data hosts such as microcontrollers and microprocessors to create a transparent bi-directional half
duplex link. The DPC-64-CTL takes care of the RF communications protocol, eliminating the need for any spe-
cial data formatting which is required for successful RF data communications. Simply input serial data in the for-
mat of 9600, 8,N,1 and the CTL will reproduce your original data at the receiving end. Error checking is auto-
matically performed on the received data. The DPC-64-CTL is capable of transmitting 1-64 byte packets of data
at a time. More than 64 bytes may easily be transmitted through simple implementation of the included optional
flow control lines.

FEATURES

Transparent data formatting and error detection

Processes 1 to 64 byte data packets per transmission

Optional Handshaking lines included to transceive more than 64bytes
Convenient Test Transmission Mode for diagnostic purposes

1200, 2400,4800 or 9600 8,N,1 protocol compatible

Simple to interface to CMOS/TTL hosts

Significantly reduces design time

Automatic TX/RX switching

Automatic data input detection

d Available on 433.92, 868 al’ld 914.5MHZ Pin Number Description
* Up to 700ft range 1 RSSI Output (available on -SS modules)
* Svoperation, <15mA 2-7 No Connection
* RSSI output
8 CLK output
* RF Carrier Detect Output
9 TEST Link
e Compatible with the DPC-64-RS232 modules
10 Audio Output
MECHANICAL DIMENSIONS
1 Carrier Detect Output
12 +5V Suppl
}7 1.3" 4{ pply
[0 0 60 0 0 0 06 0 © o]0 13’20’22 GND
012 22,
o ° 14 Send Data Control Line- Input
09" [Bofiom View °| o8 15 Data Ready Control Line- Output
L e 1 16 Transmit Data— Output
17 Busy Control Line— Output
o In | 18 Receive Data- Input
‘ i i 047"
o1 TUUUUUTUUNU 19 Reserved- do not connect
1k
0.10" 21 Antenna

ABACOM Technologies ° 32 Blair Athol Crescent * Etobicoke * ON « M9A 1X5 « Tel +416-236-3858 + Fax +416-236-8866
www.abacom-tech.com

Detailed Pin Description

Pin 1— RSSI Output

The RSSI (received signal strength indication) out-
puts a DC voltage proportional to the signal
strength received. This RSSI signal may be inter-
faced to external circuits such as an A/D converter
or analog displays and serve as an aid to optimize
position of the DPC-64-CTLss modules for best
performance.

The table below provides typical values of RSSI for
varying levels of RF signal strength applied.

RF Input (dBm) | RSSI (V)
-105 0.82
2100 0.88

-90 112
80 143
70 175
60 2.06
50 2.36
-40 257
-30 26
-20 26

Pins 2-7
No connection.
Pin 8- CLK

This is a 16MHz external clock signal which may be
interfaced to external devices if desired. Otherwise
this pin may be left unconnected.

Pin 9- Test

This pin is internally pulled high via an internal pull-
up resistor. When taken low, typically via a tactile
feedback pushbutton switch or any other dry con-
tact, the data input pin 18 will be ignored and a 64
byte internal preset message will be output on pin
16 of the receiving DPC-64-CTL module. The con-
tent of this test message will be:

<ABACOM Technologies> DPC-64 www.abacom-tech.com
+1(416)236-3858

The test message is intended for diagnostic pur-

poses and serves as a quick test to verify the
integrity of the RF link. With a receiving host PC
running a simple terminal program such as
Hyperterminal configured for xx00,8,N,1 the
content of the test message in a correctly config-
ured RF wireless link will be displayed.

Alternatively, an LED connected to the Transmit
Data Output pin 17 as shown in the test circuit
will flash when a valid test message is received.

Pin 10— Audio Output

The analog signal on pin 10 is the demodulated
signal from the receiver and is made available to
the designer where it may be used for custom
specific design functions. If not required, this pin
may be left unconnected.

Pin 11— Carrier Detect

The CD pin is active low in the presence of an
RF carrier. The CD may be used as additional
control logic for external circuits. If not required,
this pin may be left unconnected.

Pin12- +5V Supply

Supply pin 12 should be decoupled to Ground
via a 0.1uF ceramic capacitor.

Pins 13,20,22- Supply/RF Ground

The three ground pins are internally connected
to the DPC-64-CTL ground plane. We recom-
mend connecting all three ground pins if possi-
ble. At a minimum any one of the ground pins
must be connect to system ground. Pin 22 is
preferred as an RF ground for 50 Q coaxial ca-
ble feeding off board antenna.

Pin 14 — Send Data

The send data control line is active high. When
taken high, the data received from the transmit-
ting DPC-64-CTL will be serially output on pin
16. If held low, the data received over-the-air-will
be stored in the DPC-64-CTL'’s buffer until “send
data” is taken high. The send data line functions
in association with the data ready pin 15.

Pin 15— Data Ready

When the receiving DPC-64 has received valid
data, the data ready control line may be used to

ABACOM Technologies ° 32 Blair Athol Crescent * Etobicoke * ON « M9A 1X5 ¢ Tel +416-236-3858 * Fax +416-236-8866
www.abacom-tech.com

signal the receiving host that the DPC-64-CTL
has valid data ready to upload. The receiving host
then asserts a logic high level on the “send data”
line at pin 14 and the data is uploaded.

Many applications require the received data from
the DPC-64-CTL to be uploaded to the host with-
out supervision. These applications therefore do
not require interfacing the data ready control line
and therefore the data ready pin 15 may be left
unconnected and the send data pin 14 then sim-
ply tied high. In this configuration, the DPC-64-
CTL will output the data as it is received.

Pin 16— Data Output

The data that has been transmitted from the DPC-
64-CTL’s is checked for errors by the receiving
DPC-64CTL. Error free data with output on pin 16
provided that the send data control line pin 14 is
at a logic high level.

Pin 17— Busy

The busy control line goes high when the DPC-
64-CTL transceiver module has either received its
maximum of 64 bytes or when it has detected the
end of incoming data (under conditions when < 64
bytes have been received from the host).

The function of the busy line pin 17 is for data
flow control with the host. Implementing the busy
line is necessary in applications where more than
64 bytes are to be transmitted. Under these cir-
cumstances, the DPC-64-CTL transceiver module
will receive the first 64 bytes of data, and then use
the busy line to signal the host to pause sending
further data until it is has completed its data proc-
essing functions and transmitted the data.

If the designers application does not require send-
ing more than 64 bytes of data, then the busy
control pin 16 may be left unconnected.

Pin 18- Data Input

Data to be transmitted over DPC-64-CTL RF link
is fed into pin 18 in standard serial CMOS/TTL
level data format of 9600bps, 8 data bits, No par-
ity and one stop bit (9600,8,N,1). One to 64 bytes
may be transmitted at a time without the need for
the flow control as is implemented with the BUSY
pin 17.

The DPC64-CTL transparently formats the data
into the correct protocol for RF communications

and then transmits the data received from the
host.

When the host is not sending data to the DPC-64-
CTL transceiver module, it is important that pin 18
is held high. If it is held low, the DPC-64-CTL will
see this condition as valid data entering on pin 18
and will begin to transmit this erroneous data.

Pin 19— Reserved

Leave pin 19 unconnected. This pin is reserved
for manufacturing functions.

Pin 21- Antenna

A simple 1/4 wave whip antenna may be con-
nected close to this pin. If a coaxial cable fed an-
tenna is used, the core of the coax must be con-
nect close to this pin, with the shield connected to
the adjacent ground pins 20 or 22.

ABACOM Technologies * 32 Blair Athol Crescent * Etobicoke * ON « M9A 1X5 ¢ Tel +416-236-3858 * Fax +416-236-8866
www.abacom-tech.com

Test Circuit (Two required to test a link)

ANT

VDD ANT
SD AUDIO
TEST
CLK
7
BUSY
TXD cD
GND RXD
—— RssI DR
2 GND GND

21

o [o
]

3

&l

DPC-64-CTL

Electrical Characteristics

Minimum Typical Maximum.
DC LEVELS
Supply Voltage 4.75 5 5.25 \%
Supply Current 20 mA
RF
Receiver Sensitivity -105dBm
RF Power Output 1 mW
FM deviation +10 KHz
Image Rejection 50 dB
Initial Frequency accuracy +100 Hz
Overall Frequency accuracy +10 KHz
Max RF input into Receiver 0 dBm
Operating frequency 914.5 MHz
EMC
Spurious Responses to 1GHz <-36 dB
LO Leakage, conducted <60 dBm
LO Leakage, radiated <60 dBm
Data
Data rates 9600 bps
Temperature
Operating -10 +55 °C
Storage -40 +100 °C

ABACOM Technologies * 32 Blair Athol Crescent * Etobicoke * ON * M9A 1X5 » Tel +416-236-3858 * Fax +416-236-8866

www.abacom-tech.com

Appendix
C

asciitohex.vi

C:\ W NDOWS\ Deskt op\ Final LabVIEW Code\asciitohex.v
Last modified on 4/30/02 at 8:03 PM

Printed on 5/4/02 at 9:45 PM

Page 1

Bl ock Diagram

‘Tms converts the ascii input string to hex data

Unbundl e

Array To Cluster

{

[15

#
3
=]
B
El

EEEEEEEEE

Ascii Input String

@ String To Byte Array

Scan From String

This scans the first 9 ascii characters
and outpurts themon the first output line.
Then scans the next 5 ascii characters

and outputs them on the second outpur
line =+

Concatenate Strings

-+

|
#|| I

E“

|
;

g

1FF

I %

#
=
H I
&

|
I

#

|
I

#

5l 's)

|
#| I

i

=l=l=lg]=[=]=[=]=

To add more bits you must change the
format string to allow more bytes to go

g g

|
3

to the array. Max for each array is 9.
Then you must add another number

=
=
]
3

o

converter Right side.

I =l

1FF!

g

:
]

w

=
=
il
s

I

#

1FF|

3

—

These are all number to Hexidecimal
String with a width of 2.

Hex Output

Page 1
robot_communication.vi

C:\My Documents\College\classes\Spring2002\Junior Design\Software\Final LabVIEW cod\
robot_communication.vi

Last modified on 5/3/2002 at 12:52 AM

Printed on 5/4/2002 at 10:15 PM

Block Diagram

(comm port)

resource name

Free up the serial Line

[This frame will close the serial port and afterwards the program will stop running.

D000 00000000000000000000000000000000 0000000000000 000 000000000

OOW 000000000000 00000000000000000000000000000000[qg[o.2]pf 00000000000 0000000000000000000000000000000000000
linitialize com port

\Informanon below is labled. (i.e. Baud rate, # of data bits, parity) ‘

O000710

Page 2
robot_communication.vi
C:\My Documents\College\classes\Spring2002\Junior Design\Software\Final LabVIEW cod\
robot_communication.vi
Last modified on 5/3/2002 at 12:52 AM
Printed on 5/4/2002 at 10:15 PM

DD:DDDH 1[0.2]pf 0000000000000 00000000000000000000000000000000000
T ...

\Loop while power is on. Send and Receive data hereA\

Setup Menu Byte IThis frame creates the string that will be transmitted to the robot depending on the
[Then Send Data GO/STOP switch and the number of transmissions. If the first time through an

linitialize command will be sent to the robot.

1€ 1, Default P
False

[os]

[This is where the informatin will be placed into the graph.

Ball Latitude |
Ball Longitude

Bundle

Build Array

Hole Longitude

OO00 0000

m‘ True M

Continue/ Do nothing

Menu Byte -Continue IP—ll

Ball Latitude
Ball Longitude
Hole Latitude

Hole Longitude

Initialize State

Menu Byte - Initialize |01

Ball Longitude
Hole Latitude

<]

numtohex.vi

\Get cordinates from user/Change to hex \

Page 3
robot_communication.vi

C:\My Documents\College\classes\Spring2002\Junior Design\Software\Final LabVIEW cod\
robot_communication.vi

Last modified on 5/3/2002 at 12:52 AM
Printed on 5/4/2002 at 10:15 PM

DDDDDDDDDDDDDDDDDDDDDDDM1[0__4]HDDDDDDDDDDDDDDDDDDDDDD‘

[This frame will convert the hex data made in the
! No Error ! previous frame and convert it to ascii text ready
to be on the serial port and sent via the
ltranscievers to the robot. If there is an error
durring initialization this step will be skipped so
lthat it will not effect any other applications using
the serial port.

error out 2 error out 3

Error False: Serial
Port Write Executed

OmO0000RO0000 0000000000 0000000000000000000000000000

H Error H

[This framg wiIIv V\{ait for the robgt to send ir}format\’on
back. This wait is set up to wait up to 2 minutes for
to receive the required number of bytes. When the
required number of bytes is received the program will
continue on. (It could take as little microseconds and
should never actually take the 2 minutes. Navigation
was worried after they made changes to their code
that it could take a really long time to send the data
via SPI. Again if there was an error during initialization|
lor during the transmission of data, the program will skij
this step and move on.

error out 3

No Error
|Ascii Read String

Timeout in Seconds Read String
120.00

‘To add more bytes you have to change the number of bytes to receive here. Currently 14 \

OO0 0000000000000 0000000000 000000000000 0000000000

H Error H

Page 4
robot_communication.vi

C:\My Documents\College\classes\Spring2002\Junior Design\Software\Final LabVIEW cod\
robot_communication.vi

Last modified on 5/3/2002 at 12:52 AM
Printed on 5/4/2002 at 10:15 PM

[00000000000000000000001(q3(p,4p0000000000000000000000¢
Dummy string when running properly
Read String Read string when using dummy string
|2204124BI4GA393050120Fb40121 |

Robot Longtitude|Robot Latitude Dummy Strng

‘Dummy string is plugged into read string here

- ooking for Ball w/GPS
Looking for Ball w/Sensors
el

oa

oking for Hole w/Sensors
ound Hole
[Task Completed

O+

[This frame will parse through the data that robot has sent. It will convert everything to items that are
displayed on the front panel. The Dummy string at the top can be placed wired into the input of the
lhextonum vi that is here. You will also have to wire the read string to the indicator that the dummy

string was hooked to, to avoid errors. To see the exact function of the hextonum function, simply
lopen it up.

OmO0000RO0000 0000000000 0000000000000000000000000000

D000 000000000000000000 s[04 plO0OOO00000o0oooooooooog

‘We don't need to update faster than the GPS so lates for a couple of seconds. ‘

Number of seconds to wait

MO0 O000R00000000000000000000000000000000000 00O 000

Page 1 |@g&f
Coordtodecandhex.vi —

C:\My Documents\College\classes\Spring2002\Junior Design\Software\Final LabVIEW cod\

Coordtodecandhex.vi
Last modified on 5/3/2002 at 12:53 AM
Printed on 5/4/2002 at 10:13 PM

Block Diagram

Numer String in Number of hex digits
I — ut 4m
[EEES 2
Tk
Hex Out
i
s
%25%2s E|
EEA =
IR EEE 1rr
% [p] S H T
@ [&bc] Chadd
FER #
e [LFFF]
. =

This will convert the the input string from the GUI into fomratted
hex data to be added to the string that is transmitted to the rbot.
It will also convert the coordinates into a fractional number of
degrees to be displayed on the graph in the main functin of the
robot communications vi.

Page 1 BEE

numtohex. vi 1

C: \' W NDOWS\ Desktop\ Final LabVIEW cod\numtohex. vi
Last modified on 5/2/02 at 11:57 PM
Printed on 5/4/02 at 10:02 PM

Bl ock Diagram

Hex Out
Coordtodecandhex. vi
| | , |
Numer String in ! -
i
Numer String in 2‘ Hex OQut 2
GBe]| R ibc
1
Numer String in 3‘ Hex Out 3
— bex out 4
Numer ?Hlng in4 =i [abc

ibc]

This function uses another function four times to convert the input strings into dec
strings and formatted "packets" to be added to the final string to send to the transceiver

Hex string to binary.vi

C:\ W NDOWS\ Desktop\ Final LabVIEW cod\Hex string to binary.v

Last modified on 5/2/02 at 11:50 PM
Printed on 5/4/02 at 9:58 PM

Page 1

1

Bl ock Diagram

"0", Default

This function converts a hex digit to four binary (true/false) bits.

Page 2 |‘—-'EJ>

Hex string to binary.vi 1

C:\ W NDOWS\ Desktop\ Final LabVIEW cod\Hex string to binary.vi
Last modified on 5/2/02 at 11:50 PM
Printed on 5/4/02 at 9:58 PM

Page 3 Eﬂ}

Hex string to binary.vi 1

C:\ W NDOWS\ Desktop\ Final LabVIEW cod\Hex string to binary.vi
Last modified on 5/2/02 at 11:50 PM
Printed on 5/4/02 at 9:58 PM

Page 4 |‘—-'EJ>

Hex string to binary.vi 1

C:\ W NDOWS\ Desktop\ Final LabVIEW cod\Hex string to binary.vi
Last modified on 5/2/02 at 11:50 PM
Printed on 5/4/02 at 9:58 PM

Page 5 Eﬂ}

Hex string to binary.vi 1

C:\ W NDOWS\ Desktop\ Final LabVIEW cod\Hex string to binary.vi
Last modified on 5/2/02 at 11:50 PM
Printed on 5/4/02 at 9:58 PM

Page 6 Eﬂ}

Hex string to binary.vi 1

C:\ W NDOWS\ Desktop\ Final LabVIEW cod\Hex string to binary.vi
Last modified on 5/2/02 at 11:50 PM
Printed on 5/4/02 at 9:58 PM

Page 1
hextoascii.vi

C: \' W NDOWS\ Deskt op\ Final LabVIEW cod\hextoascii.v
Last modified on 5/2/02 at 11:54 PM
Printed on 5/4/02 at 10:00 PM

Bl ock Diagram

‘This converts the hexidecimal output string to ascii string for transm ssion

I'nput (Hex String)

[962 x %62 x %62 x %2 x 942 x %2 x %42 x %62 x %62 x %62 X %42 X 942 X %42 x %42 x %42 x %62 x %62 X 942 X %42 X %2 x %2 x |

w

ES
= ot ol

Scan From String
uild Array

|
+
+
b
s
s
B
B
B
B
b
s
s
B
B
B
B
b
s Out put ascii string
9 ,[3bc]

2P EPRRSRPRRRReRPERd T :fﬁ

[l] 1 1 el el el ol 2 e) R L e R L
FEEEEEEEEEEEEEEEEEEEE

This programis only set up to convert 21 hex bytes to ascii character.
To convert more bytes make the "scan from string" diagram and the
“build array" diagram larger. You will also have to add more o"%2s"

to the format string. (1 more %s will constitute for 1 more byte of data
and one more block/arrary element is equivalent to one more byte.

hextonum.vi
C:\My Documents\College\classes\Spring2002\Junior Design\Software\Final LabVIEW cod\
hextonum.vi
Last modified on 5/3/2002 at 12:50 AM
Printed on 5/4/2002 at 10:16 PM

Page 1

Block Diagram

[Scan From String

15%15%2s|

[abc]]

lLat Sec dec 2
i

Direction 1

[Direction. If first byte=1 then add 255
[to the second byte. Otherwise the
ldirection is equivalent to the second

lbyte.

[Direction 2

lLong_Deg

rlLong_Min

A [Long_Sec

10000.0

FEE

-~

"00", Default

550 pirection]

£+
|Long_sec_dec?)] -
[Progress Bits 0-3
= [Progress BYTE
[Progress bits 4-7.
o] —
: [Signal Strength

[Convert the hex string to
la formatted deg min sec
Istring to be displayed on

lthe GUL. -Longitude

¥

[Decimal equivalents of robot location
for the graph

Page 1 SERIAL
Serial Read with Timeout.vi

. READ
C:\ W NDOWS\ Deskt op\ Final LabVIEW cod\Serial Read with Timeout.v
Last modified on 5/2/02 at 11:58 PM
Printed on 5/4/02 at 10:04 PM
Bl ock Diagram
Bytes to Read Serial Read
‘resource name‘ ‘H ‘
) L] |

‘error in(noerror) ‘ il Ly - gllbs.';ﬂ-,\ ‘dup VISA resource name

¥ Timeout

—{ R B} ‘IEEII error out

1000

Appendix
D

VISA Error Codes

Code
-1073807360

-1073807346

-1073807345

-1073807344

-1073807343

-1073807342

-1073807341
-1073807339

-1073807338

-1073807333
-1073807332

-1073807331

-1073807330

-1073807329

-1073807328

-1073807327

-1073807322

-1073807321

-1073807320

Name
VI_ERROR_SYSTEM_ERROR

VI_ERROR_INV_OBIJECT

VI_ERROR_INV_SESSION
VI_ERROR_RSRC_LOCKED

VI_ERROR_INV_EXPR

VI_ERROR_RSRC_NFOUND

VI_ERROR_INV_RSRC_NAME

VI_ERROR_INV_ACC_MODE
VI_ERROR_TMO

VI_ERROR_CLOSING_FAILED

VI_ERROR_INV_DEGREE
VI_ERROR_INV_JOB_ID

VI_ERROR_NSUP_ATTR

VI_ERROR_NSUP_ATTR_STATE

VI_ERROR_ATTR_READONLY

VI_ERROR_INV_LOCK_TYPE

VI_ERROR_INV_ACCESS_KEY

VI_ERROR_INV_EVENT

VI_ERROR_INV_MECH

VI_ERROR_HNDLR_NINSTALLED

Description

Unknown system error
(miscellaneous error).

The given session or
object reference is invalid.

Specified type of lock
cannot be obtained or
specified operation cannot
be performed because the
resource is locked.

Invalid expression
specified for search.

Insufficient location
information or the device
or resource is not present
in the system.

Invalid resource reference
specified. Parsing error.

Invalid access mode.

Timeout expired before
operation completed.

Unable to deallocate the
previously allocated data
structures corresponding
to this session or object

reference.

Specified degree is invalid.

Specified job identifier is
invalid.

The specified attribute is
not defined or supported
by the referenced
resource.

The specified state of the

attribute is not valid, or is
not supported as defined

by the resource.

The specified attribute is
read-only.

The specified type of lock
is not supported by this
resource.

The access key to the
specified resource is
invalid.

Specified event type is not
supported by the resource.

Invalid mechanism
specified.

A handler was not
installed.

-1073807319

-1073807318

-1073807313

-1073807312

-1073807308

-1073807307

-1073807306

-1073807305

-1073807304

-1073807302

-1073807301

-1073807300

-1073807299

-1073807298

-1073807297

-1073807295

-1073807294

-1073807286

-1073807282

-1073807279
-1073807278

VI_ERROR_INV_HNDLR_REF

VI_ERROR_INV_CONTEXT

VI_ERROR_NENABLED

VI_ERROR_ABORT

VI_ERROR_RAW_WR_PROT_VIOL

VI_ERROR_RAW_RD_PROT_VIOL

VI_ERROR_OUTP_PROT_VIOL

VI_ERROR_INP_PROT_VIOL

VI_ERROR_BERR

VI_ERROR_INV_SETUP

VI_ERROR_QUEUE_ERROR

VI_ERROR_ALLOC

VI_ERROR_INV_MASK

VI_ERROR_IO

VI_ERROR_INV_FMT

VI_ERROR_NSUP_FMT

VI_ERROR_LINE_IN_USE

VI_ERROR_SRQ_NOCCURRED

VI_ERROR_INV_SPACE

VI_ERROR_INV_OFFSET
VI_ERROR_INV_WIDTH

The given handler
reference is invalid.

Specified event context is
invalid.

You must be enabled for
events of the specified
type in order to receive
them.

User abort occurred
during transfer.

Violation of raw write
protocol occurred during
transfer.

Violation of raw read
protocol occurred during
transfer.

Device reported an output
protocol error during
transfer.

Device reported an input
protocol error during
transfer.

Bus error occurred during
transfer.

Unable to start operation
because setup is invalid
(due to attributes being
set to an inconsistent
state).

Unable to queue the
asynchronous operation.

Insufficient system
resources to perform
necessary memory
allocation.

Invalid buffer mask
specified.

Could not perform
read/write operation
because of I/O error.

A format specifier in the
format string is invalid.

A format specifier in the
format string is not
supported.

The specified trigger line
is currently in use.

Service request has not
been received for the
session.

Invalid address space
specified.

Invalid offset specified.

Invalid access width

-1073807276

-1073807275

-1073807273

-1073807271

-1073807265

-1073807264

-1073807263

-1073807257

-1073807254

-1073807253

-1073807252

-1073807248

-1073807247

-1073807246

-1073807242

-1073807240

-1073807239

-1073807237

VI_ERROR_NSUP_OFFSET

VI_ERROR_NSUP_VAR_WIDTH

VI_ERROR_WINDOW_NMAPPED

VI_ERROR_RESP_PENDING

VI_ERROR_NLISTENERS

VI_ERROR_NCIC

VI_ERROR_NSYS_CNTLR

VI_ERROR_NSUP_OPER

VI_ERROR_ASRL_PARITY

VI_ERROR_ASRL_FRAMING

VI_ERROR_ASRL_OVERRUN

VI_ERROR_NSUP_ALIGN_OFFSET

VI_ERROR_USER_BUF

VI_ERROR_RSRC_BUSY

VI_ERROR_NSUP_WIDTH

VI_ERROR_INV_PARAMETER

VI_ERROR_INV_PROT

VI_ERROR_INV_SIZE

specified.

Specified offset is not
accessible from this
hardware.

Cannot support source
and destination widths
that are different.

The specified session is
not currently mapped.

A previous response is still
pending, causing a
multiple query error.

No Listeners condition is
detected (both NRFD and
NDAC are deasserted).

The interface associated
with this session is not
currently the controller in
charge.

The interface associated
with this session is not the
system controller.

The given session or
object reference does not
support this operation.

A parity error occurred
during transfer.

A framing error occurred
during transfer.

An overrun error occurred
during transfer. A
character was not read
from the hardware before
the next character arrived.

The specified offset is not
properly aligned for the
access width of the
operation.

A specified user buffer is
not valid or cannot be
accessed for the required
size.

The resource is valid, but
VISA cannot currently
access it.

Specified width is not
supported by this
hardware.

The value of some
parameter (which
parameter is not known)
is invalid.

The protocol specified is
invalid.

Invalid size of window

-1073807232

-1073807231

-1073807229
-1073807204

-1073807202

1073676290

1073676291

1073676292

1073676293

1073676294

1073676407

1073676413

1073676418

1073676416

1073676420

1073676421

1073676424

VI_ERROR_WINDOW_MAPPED

VI_ERROR_NIMPL_OPER

VI_ERROR_INV_LENGTH
VI_ERROR_SESN_NLOCKED

VI_ERROR_LIBRARY_NFOUND

VI_SUCCESS_EVENT_EN

VI_SUCCESS_EVENT_DIS

VI_SUCCESS_QUEUE_EMPTY

VI_SUCCESS_TERM_CHAR

VI_SUCCESS_MAX_CNT

VI_WARN_CONFIG_NLOADED

VI_SUCCESS_DEV_NPRESENT

VI_WARN_NULL_OBJECT

VI_SUCCESS_QUEUE_NEMPTY

VI_WARN_NSUP_ATTR_STATE

VI_WARN_UNKNOWN_STATUS

VI_WARN_NSUP_BUF

specified.

The specified session
already contains a
mapped window.

The given operation is not
implemented.

Invalid length specified.

The current session did
not have a lock on the
resource.

A code library required by
VISA could not be located
or loaded.

Specified event is already
enabled for at least one of
the specified mechanisms.

Specified event is already
disabled for at least one of
the specified mechanisms.

Operation completed
successfully, but queue
was already empty.

The specified termination
character was read.

The number of bytes
transferred is equal to the
input count.

The specified configuration
either does not exist or
could not be loaded.
VISA-specified defaults
will be used.

Session opened
successfully, but the
device at the specified
address is not responding.

The specified object
reference is uninitialized.

Wait terminated
successfully on receipt of
an event notification.
There is at least one more
event occurrence of the
type specified by
inEventType available for
this session.

Although the specified
state of the attribute is
valid, it is not supported
by this resource
implementation.

The status code passed to
the operation could not be
interpreted.

The specified I/O buffer is

1073676440

1073676441

1073676442

1073676443

VI_SUCCESS_NCHAIN

VI_SUCCESS_NESTED_SHARED

VI_SUCCESS_NESTED_EXCLUSIVE

VI_SUCCESS_SYNC

not supported.

Event handled
successfully. Do not
invoke any other handlers
on this session for this
event.

Operation completed
successfully, and this
session has nested shared
locks.

Operation completed
successfully, and this
session has nested
exclusive locks.

Operation completed
successfully, but the
operation was actually
synchronous rather than
asynchronous.

Appendix
E

TRANSC~2.C May 4, 2002

/**/

/* Robot B */
/* Communications */
/* Spring 2002 */

/**/

#include "hcl2.h"
#include "DBugl2.h"
#define SPI _VEC (* (int *)0x0bl8)

volatile char RECEIVE BUFF[21];
volatile char TRANSMIT BUFF[14];
volatile char NAV RECEIVE[9];
volatile char z, count, xx;

void spi isr(void) ;

/**********FUNCTIONS***/

int RECEIVE ()
{
unsigned int y=0;
while (y < 21)
{

// receive 21 bytes from remote station

while ((SCOSR1 & 0x20) == 0); // wait for transmit complete
RECEIVE BUFF[y] = SCODRL;
TRANSMIT BUFF[13] = ADROH; //Get RSSI value

yt+;
}

int TRANSMIT ()
{
unsigned int y=0;
while (y < 14)
{
SCODRL = TRANSMIT BUFF[y];
while ((SCOSR1 & 0x80) == 0);
y++;
}

// transmit 14 bytes to comp.

}

int ORDER()
{

// move bytes from nav to trans in proper order

}

TRANSMIT BUFF[0] = RECEIVE BUFF[1]; //Bounce Back Robot Lat Deg
TRANSMIT BUFF[1] = RECEIVE BUFF[2]; //Bounce Back Robot Lat Min
TRANSMIT BUFF[2] = NAV RECEIVE[l1]; //Robot Lat Seconds

TRANSMIT BUFF[3] = NAV_RECEIVE[Z]; //Robot Lat Seconds Decl
TRANSMIT BUFF([4] = NAV RECEIVE([3]; //Robot Lat Seconds Dec2
TRANSMIT BUFF[5] = RECEIVE BUFF[6]; //Bounce Back Robot Long Deg
TRANSMIT BUFF[6] = RECEIVE BUFF([7]; //Bounce Back Robot Long Min
TRANSMIT BUFF[7] = NAV RECEIVE[4]; //Robot Long Seconds
TRANSMIT BUFF[8] = NAV RECEIVE[5]; //Robot Long Seconds Decl
TRANSMIT BUFF[9] = NAV RECEIVE[6]; //Robot Long Seconds Dec2
TRANSMIT BUFF[10] = NAV RECEIVE[7]; //Directionl

TRANSMIT BUFF[11] = NAV RECEIVE[8]; //Direction2

mod progress byte();

int INITIALIZE ()

{

//send to nav
TO NAV () ;
enable () ;

Page 1

TRANSC~2.C

}

int WAIT (int waittime)
{
int i;
for (i=0; i<waittime;i++);

}

int STOP ()

{
//Set stop bit
PORTA = PORTA | 0x02;
WAIT (5000000000) ;

}

int mod progress byte()
{
if (NAV_RECEIVE[1] == 0x01)
{

May 4, 2002

if (z==0) TRANSMIT BUFF[12] = 0x01; // ball w/gps
if (z==1) TRANSMIT BUFF[12] = 0x08; // hole w/gps

}
else if (NAV RECEIVE[1] == 0x02)

{
// ball-hole has control

if (z==0) TRANSMIT BUFF[12] = 0x02; // ball w/sensors
if (z==1) TRANSMIT BUFF[12] = 0x10; // hole w/sensors
}
else if (NAV RECEIVE[1] == 0x04)
{
// objective comp
if (z==0) TRANSMIT BUFF[12] = 0x04; // have ball
if (z==1) TRANSMIT BUFF[12] = 0x20; // found hole - ball in hole
zZ++;
if (z==2) z=0;
}
}
int TO_NAV ()

{
char y = 0;
while (y < 20)
{
SPODR = RECEIVE BUFF[y+1];

PORTA = 0x01;

while ((PORTS & 0x80) == 0x80);
PORTA = 0;

while ((PORTS & 0x80) != 0x80);
yt+;

xx = SPODR;

}

/7
/S

send # of bytes to NAV group

load register: send data to master
tell NAV. ready to send

Wait for SS to go low

cleary ready line

wait for SS to go high

increment for next byte

read spi data register, clears spif

/**********MAIN**/

int main ()

{

int 1i;
COPCTL = 0;
i=20;
z = 0;
count = 0;

//turns off COP control

/**********PORT SETUP**/

DDRS = 0Ox11;
DDRA = 0x01;

PORTA = 0; //clear PORTA

//set PORTS[0] for output, ss, sclk, mosi inputs
//set PORTA[0] output, PORTA[1-7] input

Page 2

TRANSC~2.C

May 4, 2002 Page

/**********SCI SETUP***/

loop mode, Non-parity

//Transmit/Receive enable

SCOBDL = 0x34; //set BAUD 9600
SCOCR1 = 0x00; //Initialize 8-bit,
SCOCR2 = 0x0C;

SCODRH = SCOSR1;

/**********A D SETUP***/

ATDCTL2 = 0x80;

//power up a-d
//8-bit operation,

4 atd clock periods

continuous conversion, channel ADRO

/**********SPI SETUP***/

ATDCTL4 = 0x01;
ATDCTL5 = 0x60; //8 conversions,
SPOCR1 0xCC;
SPOCR2 = 0x00;
SPOBR = 0x07;
SPI VEC = (int) spi isr;
while (1)
{
begin:
RECEIVE () ;
switch (RECEIVE BUFF[0])

{

case 0x01: INITIALIZE () ;

break ;

case 0x02: WAIT(1):;
break ;

case 0x04: STOP () ;
goto begin;
break ;

default : goto begin;
break ;

}

ORDER () ;

TRANSMIT () ;
}
}

// sets clock speed,
// remaps spi interrupt vector

clock is set by master

// receive data from comp.
// 1f menu byte 1is:

// 0x01 then perform initail stuff
// 0x02 then wait for a time

// 0x04 then stop everything
// 1f reached reset HCI1Z2

// reorders data for remote station
// transmit data to remote station

/**********INTERRUPTS**/

@interrupt void spi isr(void)
{

if (count > 8) count = 0;

while ((SPOSR & 0x80) == 0);
NAV_RECEIVE[COunt] = SPODR;
//xx = SPODR;

if ((NAV_RECEIVE[0] == 0x02) ||

count++;

// increment counter and reset counter

// wait for transmit complete

// store received data in buffer
(NAV_RECEIVE[O] ==

0x04)) count = 9;

Appendix
F

COMMTEST.C

// Comm SPI test
// EE 382 Team B

// Preliminary Version
// 4-25-02

// Rev.

alpha 2.4.2

May

/****************************/

#include <hcl2.h>
#include <DBugl2.h>

#define D 1MS

#define comm SS

void
void
void

char
char

main ()

{

}

//***Receive Function***
void receive (SS,

{

//COPCTL = 0;

DDRA = 0x01;

//Setup SPI

DDRS = 0OxEO;

PORTS = PORTS
SPOCR1
SPOCR2
SPOBR = 0x07;

delay (300);

0x5C;
0x00;

(8000/4)

(0x01)

receive array[22]
send array[9] = {0};

delay (unsigned int ms);
receive (int SS,
send (int SS,

int x);
int x);

{0};

//Set PORTA

0x80;

//Not bidirectional, normal mode

while ((PORTA & 0x02)

receive (comm_SS,

send array[0]
send array[1]
send _arrayl[2]
send_array[3]
send array|[4]
send array|[5]
send _arrayl[6]
send array([7]
send array|[8]

delay (300) ;

send (comm_SS,

int 1i;

20);

0x01;
0x10;
0x11;
0x12;
0x13;
0x14;
0x15;
0x00;
0xB4;

X)

4,

2002

//S8S, SCLK, MOSI OUTPUTS

//BRING SS HIGH TO DESELECT SLAVE;

//SPI clock set to 1Mhz

0); // wait for directions

// Receive directions from communications

progress byte
lat sec

lat sec decl
lat sec decZ
long sec
long sec decl
long sec dec2
directionl
directionZ2

Page 1

COMMTEST.C May 4,

2002

//DBugl2FNP->printf ("entered receive function\n\r");

for (i=0; 1 < x; 1i++)
{

PORTS = PORTS & ~0x80; //BRING SS 1lo

SPODR = Oxac; //start SCLK

w TO SELECT SLAVE;

while ((SPOSR & 0x80) == 0); //Wait for transfer to complete

receive array[i] = SPODR;
PORTS = PORTS | 0x80; //BRING SS hi
DBugl2FNP->printf (" %x ",receive array[i
delay (1) ;

if (1 < (x-1))

// store data

gh TO DESELECT SLAVE;

1)

{while ((PORTA & 0x02) == 0);} // wait for comm to be ready

}
DBuUgl2FNP->printf (" \n\r");
return ;

//***Send Function***
void send(SS, x)
{
int 1i;
PORTS = PORTS & ~0x80;
for (i=0; i1 < x; i++)
{
SPODR = send arrayl[i];
while ((SPOSR & 0x80) == 0); //Wait
DBugl2FNP->printf (" %$x ",send arrayl[i]);
}

//Set slave select low

//Send data to slave

for transfer to complete

DBugl2FNP->printf ("\n\rtransfer complete\n\r");

PORTS = PORTS | 0x80;
return ;

/**** A Delay Function*****x*/
void delay (unsigned int ms)

{

int 1i;

while (ms>0)

{
i=D 1MS;
while (i>0)

i--;

ms--;

}

Page 2

Appendix
G

Instructions Manual

THE LabVIEW Graphical User Interface

[robot_communication. vi

Fle Edit Cperate Tools Browse Window Help

0[] [5ot ropication Fort |~ 2o~ || a0~]

HE

418 1234 34 4 46 1234

106 57 44 1234 106 57 52 1234

Step 1: Open the robot communications.vi file.
Step 2: Choose which serial port to use.
LabVIEW will list all possible ports in a drop down menu right above the graph.
ASRLI::INSTR is equivalent to COM1
ASRL2::INSTR is equivalent to COM2
Step 3: Give GPS coordinates of the ball and hole.
Enter the coordinates in the form 34 12 18 1234. Spaces only.

Step 5: Make sure that the Go/Stop switch is in the “Go” position.

Step 6: Power up the robot. The robot should wait for LabVIEW to start running.
Step 7: Start the LabVIEW code by clicking the arrow icon in the top left of the toolbar.
Step 8: Sit back and watch.

The user will also be able to quickly view the robot coordinates given in degrees,
minutes, seconds, and decimals of seconds. The compass will display the direction in
degrees from North (i.e. 90° is East). The progress bar at the top of the screen displays
the current activity of the robot. The user will also be able to see where the robot is in
reference to the ball and hole on a graph. The graph is auto adjusting to the range needed
to display the ball, hole, and robot. Finally, the “Task Completed” light will light up with
the robot has finished it task.

Troubleshooting: Debugging the GUI

B! robot_communication.vi

Fle Edit Cperate Tools Browse Window Help

BEED

If the robot coordinates are all zeros

When the robot coordinates are all zeros it usually means that LabVIEW is not
receiving any information from the robot. Scroll up to debugging portion of the GUIL
There are five displays for errors each checking for errors in different places of the code.
A quick way to check for errors is to look at status box in each of the error displays; a
green check means everything is fine and a red x means that there is an error. If there is
an error, the user can look up the error code. The error codes are definitions of the error;
they are located in the appendix D as well as in the LabVIEW help. The most common
problems have been listed by each of the error displays in the GUI and the codes should
never have to be looked up. The best way to fix the problem has been listed under each

error as well.

Other information displayed on GUI
Hex read and write strings
ASCII read and write strings
Number of times the program has sent data to the robot

Ball and hole latitude and longitude coordinates in degrees only

	appendix total.pdf
	appendix Total.pdf
	Instructions Manual.pdf
	Instructions Manual
	THE LabVIEW Graphical User Interface
	Troubleshooting: Debugging the GUI
	If the robot coordinates are all zeros
	Other information displayed on GUI

