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Problem 6.34. For the op-amp circuit shown in Fig. P6.34, find the zero-state

step response v1(t) for the case that vs(t) = u(t)V.

First, come up with the general differential equation for v1 for t > 0.
Nodal analysis at v1 produces
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we need to eliminate vo from that equation. We can, for example, say that
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where iF is the current flowing from inveting input to vo, and then

iF =
v1

R
+ C

dv1

dt

Inserting in equation 1 we get
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Assembling same derivatives of v1 we get
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Now we have it in the standard form and
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What mode is this?
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Since α > ωn the mode is overdamped with the solution
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where
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For t → ∞ the capacitors act as open circuits and v1 =
vs

2
= K. The solution is now
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2
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Next we need to use the initial conditions. We are looking for the zero-state response, so we
know that for t < 0 v1(t) = 0 and v′

1
(t) = 0.

For t > 0 we have that

v1(t) = vC(t) =
1
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Since the current is finite and the integral is over zero time it must be that v1(0+) = 0.
and thus

A1 + A2 +
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2
= 0 (4)

Next we need to find the initial condition on v′
1
(0+). Notice v0 = v1 = 0 because the voltage

across the capacitor is initially zero. Since we have from earlier
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dv1

dt

we get
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which gives us

−A1 − 2A2 = 0 (6)

From this we get that A2 = −A1

2
. Inserting into equation 4 we get
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and then
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The expression for v1 now looks like
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and here is a plot of that curve and its components.


