Some Useful Network
Theorems

INTRODUCTION

In this appendix we review three network theorems that are useful in simplifying the analysis of
electronic circuits: Thévenin’s theorem, Norton’s theorem, and the source-absorption theorem.

! .1 THEVENIN'S THEOREM

Thévenin’s theorem is used to represent a part of a network by a voltage source V; and a
series impedance Z, as shown in Fig. C.1. Figure C.1(a) shows a network divided into two
parts, A and B. In Fig. C.1(b) part A of the network has been replaced by its Thévenin
equivalent: a voltage source V, and a serics impedance Z,. Figure C.1(c) illustrates how V, is
to be determined: Simply open-circuit the two terminals of network A and measure (or cal-
culate) the voltage that appears between these two terminals. To determine Z, we reduce all
external (i.e., independent) sources in network A to zero by short-circuiting voltage sources
and open-circuiting current sources. The impedance Z, will be equal to the input impedance
of network A after this reduction has been performed, as illustrated in Fig. C.1(d).

C.2 NORTON’S THEOREM"

5

Norton’s theorem is the dual of Thévenin’s theorem. It is used to represent a part of a network
by a current source [, and a parailel impedance Z,, as shown in Fig. C.2. Figure C.2(2)
shows a network divided into two parts, A and B. In Fig. C.2(b) part A has been replaced by
its Norton’s equivalent: a current source I, and a parallel impedance Z,. The Norton’s cur-
rent source I, can be measured (or calculated) as shown in Fig. C.2(c). The terminals of the
network being reduced (network A) are shorted, and the current I, will be equal simply to
the short-circuit current. To determine the impedance Z, we first reduce the external excitation
in network A to zero: That is, we short-circuit independent voltage sources and open-circuit
independent current sources. T he impedance Z, will be equal to the input impedance of
network A after this source-elimination process has taken place. Thus the Norton impedance
7, is equal to the Thévenin impedance Z,. Finally, note that 1, = V,/Z, where z=2,=27:.

(.2 NORTON’S THEOREM

FIGURE C.1 Thévenin’s theorem.

(c)

FIGURE C.2 Norton’s theorem.

mwwﬂmnn C.3(a) .m:oém a bipolar junction transistor circuit. The transistor is a three-terminal device
with the terminals labeled E (emitter), B (base), and C (collector). As shown, the base is con-
nected to the dc power supply V™ via the voltage divider composed of R, and R,. The collector i

onnzmnﬁm to the dc supply V™ through R; and to ground through R,. To ~m,:z Em ; the anz ceis wo
wish to apply Thévenin’s theorem to reduce the circuit. o Py the anslyss we

Solution
Thévenin’s theorem can be used i
at the base side to reduce the net 3 ™
R, to a dc voltage source Vg, ork composed of V. K, and
. R,

4\ = —
BB R, +R,
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(.3 SOURCE-ABSORPTION TH EOREM
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- s - .
m_mEn O.mm& shows the small-signal equivalent-circuit model of a transistor. We want to find th
resistance Ry, “looking into” the emitter termi i nce mittor
1 inal E—that is, the resistance b i
! X 2 etwee: r
and ground—with the base B and collector C grounded. " fhe emier

(a) to that in (b). (See Example C.1.)

FIGURE C.3 Thévenin’s theorem applied to simplify the circuit of

and a resistance Rg,

R, = Ry/IR,
where // denotes “in parallel with.” At the collector side, Thévenin’s theorem can be applied to R,
reduce the network composed of V*, R5, and R, to a dc voltage source Vee

+ Ry (a)
Vee =V
R;+R, FIGURE C.5 Circuit for Example C.2.
and a resistance R, )
¢ Solution
Re = Ry/IRy . <
From Fig. C.5(a) we see that the voltage v, will be equal to ~v,. Thus looking between E and

O i i i
W :“Ma WM mwm m_amaﬁsg 7 in parallel with a current source drawing a current g,,v, away from
nal E. The latter source can be replaced by a resis ing in the
istance i i
e B givem b y (1/g,,), resulting in the input resis-

The reduced circuit is shown in Fig. C.3(b).

¥ c.3 SOURCE-ABSORPTION THEOREM au;:\ﬁ

Consider the situation shown in Fig. C.4. In the course of analyzing a network we find a con-
trolled current source I, appearing between two nodes whose voltage difference is the control-
ling voltage V,. That is, I,=g,V, where g, is a conductance. We can replace this controlled

source by an impedance Z, = v./I,=1/g,, as shown in Fig. C.4, because the current

drawn by this impedance will be equal to the current of the controlled source that we have

replaced.

as illustrated in Fig. C.5(b).

FIGURE C.4 The source-absorption theorem.
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PROBLEMS

n’s theorem to simplify the cireuit and hence caleulate the voltage V.
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Shasa o:hmﬂ I, mA independent of the volt-

€.1 Consider the Thévenin equivalent circuit characterized
by V,and Z,. Find the open-circuit voltage V,. and the short-
circuit current (i.e., the current that flows when the terminals
are shorted together) /.. Express Z,in terms of Ve and /.

€.2 Repeat Problem C.1 for a Norton equivalent circuit
characterized by I, and Z,,.

€.3 A voltage divider consists of a 9-kQ resistor con-
nected 10 +10 V and a resistor of 1kQ connected to ground.
What is the Thévenin equivalent of this voltage divider?

What output voltage results if it is loaded with 1 kQ? Cal-
culate this two ways: directly and using your Thévenin
equivalent.

€.4 Find the output voltage and output resistance of the cir-
cuit shown in Fig. PC4 by considering a succession of
Thévenin equivalent circuits.

€.5 Repeat Example C.2 with a resistance Rp connected
between B and mSE.E in Fig. C.5 (i.e., rather than directly
grounding the base B as indicated in Fig. C.5).

PROBLEMS &

* 1kQ 1 kQ 1kQ
AAA——9 AN - AAA— . °
+
0v 1 kQ 1 kQ 1kQQ 2k0 V,

FIGURE PC.4

€.6 Figure PC.6(a) shows the circuit symbol of a device
w:o.én.mm the p-channel junction field-effect transistor (JFET),
>m indicated, the JFET has three terminals. When the gate 5.,
E:£ G is connected to the source terminal S, the Héo.maam:w_
anﬁnw shown in Fig. PC.6(b) is obtained. Its i—v characteristic

is given by
i = Ipgs| 22 - (2]
w27~ ( )]

for vV,

i = Ings for v=Vp

S
oAmoEo&
G Pl |
(Gate)” ¢ <1
D
° (Drain) oD
(a) (b)
FIGURE PC.6

o

where Igs and Vp are positive constants for the particular
JFET. Now consider the circuit shown in Fig. PC.6(c) and
let Vo =2 V and Ipgs = 2 mA. For V* =10 /eros.\ that th

JFET is operating in the constant-current mode and find Em
<c.:mmm across it. What is the minimum value of V™ for EEnM
this mode of operation is maintained? For V¥ =2 V find th

values of 7 and V. ¢

w\,ﬁ
2.5kQ
7
—>
25kQ | +
<4 1
v
(©




Single-Time-Constant Circuits

INTRODUCTION
Single-time-constant (STC) circuits are those circuits that are composed of, or can be reduced
and one resistance. An STC circuit

to, one reactive component (inductance or capacitance)
formed of an inductance L and a resistance R has a time constant 7 = L/R. The time constant
zof an STC circuit composed of a capacitance C and a resistance R is given by 7= CR.
Although STC circuits are quite simple, they play an important role in the design and
analysis of linear and digital circuits. For instance, the analysis of an amplifier circuit can
usually be reduced to the analysis of one or more STC circuits. For this reason, we will
review in this appendix the process of evaluating the response of STC circuits to sinusoidal
and other input signals such as step and pulse waveforms. The latter signal waveforms. are
encountered in some amplifier applications but are more important in switching circuits,

including digital circuits.

D.1 EVALUATING THE TIME CONSTANT

The first step in the analysis of an STC circuit is to evaluate its time constant 7.

Reduce the circuit in Fig. D.1 (a) to an STC circuit, and find its time constant.
Solution

The reduction process is illustrated in Fig. D.1 and consists 0!
he final circuit (Fig. D.1c), we obtain the time constant as

f repeated applications of Thévenin’s

theorem. From t
7= C{R [R5+ (R/IR))1}

D.1.1 Rapid Evaluation of 7

ortant to be able to evaluate rapidly the time constant Tof 2
accomplishing this goal consists first of reducing
is by a voltage source, short it, and if by a current

In many instances, it will be imp
given STC circuit. A simple method for
the excitation to zero; that is, if the excitation

D.1 EVALUATING THE TIME CONSTANT

R, Ry
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FIGURE D.1 he reduction of the circuit in (a the S cireuit in (e) throug] eated ation
! (a) o C ci © ugh the rep applic

source, open It. Ther . the circuit has one reactive co: nponent and a number of resistances,
m::« hold” of the two te nals of the reactive component (capacitance or inductance) and
P P n
find the equivalent resistance R, q Seen by the component. The time constant is th VH €
Q! . y P! S s then either
N\\Eﬁ Or ﬁ%m As an exam, e, in the circuit of Fig. D. we f the ¢ or
9 p C f 12 (a) nd that apact C

“sees” a resistance R, in parallel with t] i inati
R T 4, in p he series combination of R; and (R, in parallel with

Req = RyI[R3+ (R,y/IR))]
and the time constant is CR.y
In some cases i ircui
s owﬁ M&Mm it may be found that the circuit has one resistance and a number of capac-
nee Rmmﬂwuﬂmw M_ow.w. Nw: mEmr% Mmmo the procedure should be inverted; that is, “grab rw_a:
S rminals and find the equiv: i ui Tt
quivalent capacitance Cq, Or equivalent inductance

eq» SEEN DY his resistance. Tl im i . -
$ S . S q is i
1 ¢ b . he time constant is then found as Qo R o N\Q /R. This is illus

= FIGURE D.2 Circuit for Example D.2.




D.2 CLASSIFICATION OF STC CIRCUITS

APPENDIX D SINGLE-TIME-CONSTANT CIRCUITS

B8 of the circuits in Fig. D.3(a) and D.3(b). The “trick” employed to obtain the arrangement in

Solution
After reducing the excitation to zero by
ces” an equivalent capacitance C; + C,. Thu

7=(C,+Cy)R

short-circuiting the voltage source, we se¢ that the resis-
s the time constant 7 is given by

tance R

STC circuit has more than one resistance and more than one

o in some cases an ! . . .
Finally, tance). Such cases require some initial work to simplify

capacitance (or more than one induc
A
the circuit, as illustrated by Example D.3.

Here we show that the response of the circuit in Fig. D.3(a) can be obtained using the method of

analysis of STC circuits.

Solution

The analysis steps are illustrated in Fig. D.3. . ,
arate but equal voltage sources. The reader should convince himself or herse

In Fig. D.3(b) we show the circuit excited by two sep-
1f of the equivalence

(R, I| Ry

G+ Q)
(Ri || Ry

¢ H
A Ry V (€ +C) o1 v 3R IR (2) :A 3G
“\R, + R,

@

in (a) can be found by superposition, that

(d)

FIGURE D.3 The response of the circuit
responses of the circuits in (d) and (e).

is, by summing the

Fig. D.3(b) is a very useful one.

Application of Thévenin’s theorem to the circuit to the left of the line XX and then to the
circuit to the right of that line result in the circuit of Fig. D.3(c). Since this is a linear circuit,
the response may be obtained using the principle of superposition. Specifically, the output
voltage v, will be the sum of the two components v,; and vg,. The first component, vy, is the
output due to the left-hand-side voltage source with the other voltage source reduced to zero.
The circuit for calculating v, is shown in Fig. D.3(d). It is an STC circuit with a time constant
given by

7= (C;+Cy)(R/IR,)

Similarly, the second component vy, is the output obtained with the left-hand-side voltage source
reduced to zero. It can be calculated from the circuit of Fig. D.3(e), which is an STC circuit with
the same time constant 7.

Finally, it should be observed that the fact that the circuit is an STC one can aiso be ascer-
tained by setting the independent source v, in Fig. D.3(a) to zero. Also, the time constant is then
immediately obvious:-

STC circuits’can be classified into two categories, low-pass (LP) and high-pass (HP) types,
with each category displaying distinctly different signal responses. The task of finding
whether an STC circuit is of LP or HP type may be accomplished in a number of ways, the
simplest of which uses the frequency-domain response. Specifically, low-pass circuits pass
dc (i.e., signals with zero frequency) and attenuate high frequencies, with the transmission
being zero at @ = . Thus we can test for the circuit type either at @ =0 or at @ = oo. At
@ = 0 capacitors should be replaced by open circuits (1/j@C = <) and inductors should be
replaced by short circuits (j@L = 0). Then if the output is zero, the circuit is of the high-pass
type, while if the output is finite, the circuit is of the low-pass type. Alternatively, we may test
at @ = oo by replacing capacitors by short circuits (1/joC = 0) and inductors by open circuits
(jwL = o). Then if the output is finite, the circuit is of the HP type, whereas if the output is
zero, the circuit is of the LP type. In Table D.1, which provides a summary of these results, s.c.
stands for short circuit and o.c. for open circuit.

Figure D.4 shows examples of low-pass STC circuits, and Fig. D.5 shows examples of
high-pass STC circuits. For each circuit we have indicated the input and output variables of
interest. Note that a given circuit can be of either category, depending on the input and out-
put variables. The reader is urged to verify, using the rules of Table D.1, that the circuits of
Figs. D.4 and D.5 are correctly classified.

Test At Replace CircuitIs LP If Circuit Is HP If

Cbyo.c. o .
0=0 output is finite output is zero
Lbys.c.
Cbys.c. . . .
W=co output is zero output is finite
Lbyo.c.
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D.3 FREQUENCY RESPONSE OF STC CIRCUITS

,c..N Quﬁ*@ the ,mo:oéw:m circuits as STC high-pass or low-pass: Fig. D.4(a) with output'i, in C to ground;
: Fig, D.4(b) with output iy E R to ground; Fig. D 4(d) with output i, ,,u‘ﬁ.,ﬂo ground; Fig. D.4(e) with
otiput 4, in R to ground; Fig. D 5(b) with output i, in L to ground: and Fig. D.5(d) with output 7, across C.

D.3.1 Low-Pass Circuits
The transfer function T(s) of an STC low-pass circuit always can be written in the form

K

T [ .1
) = T /an D-1)
which, for physical frequencies, where s = j, becomes
. K
T(jo) = ————— D.2
U= /o) ©2

where K is the magnitude of the transfer function at @ = 0 (dc) and @ is defined by
w,=1/7

with 7 being the time constant. Thus the magnitude response is given by

Tl = —E— ®3)
N1+ (/)
and the phase response is given by
o(w) = —tan” (/@) D.4)

Figure D.6 sketches the magnitude and phase responses for an STC low-pass circuit.
The magnitude response shown in Fig. D.6(a) is simply a graph of the function in Eq. (D.3).
The magnitude is normalized with respect to the dc gain K and is expressed in decibels; that
is, the plot is for 20 log|T(j®)/K|, with a logarithmic scale used for the frequency axis.
Furthermore, the frequency variable has been normalized with respect to @. As shown, the
magnitude curve is closely defined by two straight-line asymptotes. The low-frequency
asymptote is a horizontal straight line at 0 dB. To find the slope of the high-frequency
asymptote consider Eq. (D.3) and let @/ @, > 1, resulting in

SRR )
IT(j)l p.
It follows that if @ doubles in value, the magnitude is halved. On a logarithmic frequency axis,
doublings of @ represent equally spaced points, with each interval called an octave. Halving the
magnitude function corresponds to a 6-dB reduction in transmission (20 log 0.5 =-6 dB). Thus
the slope of the high-frequency asymptote is —6 dB/octave. This can be equivalently expressed
as —20 dB/decade, where “decade” indicates an increase in frequency by a factor of 10.

The two straight-line asymptotes of the magnitude-response curve meet at the “corner
frequency” or “break frequency” @,. The difference between the actual magnitude-response
curve and the asymptotic response is largest at the corner frequency, where its value is 3 dB.
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FIGURE D.6 (a) Magnitude and (b) phase response of STC circuits of the low-pass type.
To verify that this value is correct, simply substitute @ = @y in Eq. (D.3) to obtain
IT(joy)| = K//2

ve to the dc gain, which corresponds to

Thus at @= @, the gain drops by a factor of /2 relati
appropriately referred to as the 3-dB

a 3-dB reduction in gain."The corner frequency @y is

frequency.

Similar to the magnitude respo
closely defined by straight-line asymptot
_45°, and that for @ > @, the phase approaches
line approximates the phase function, with a maximul

range 0.1, to 100.

nse, the phase-response curve, shown in Fig. E.6(b), is
es. Note that at the corner frequency the phase is
_90°. Also note that the —45°/decade straight
m error of 5.7°, over the frequency

Consider the circuit shown in Fig. D.7(2), where an ideal voltage amplifier of gain 4= —~100has a
small (10-pF) capacitance connected in its feedback path. The amplifier is fed by a voltage
ng a source resistance of 100 kQ. Show that the frequency response V,/V, of this

source havis
ent to that of an STC circuit, and sketch the magnitude response.

amplifier is equival

—20 dB/decade

(@) ®)

FIGURE D.7 (a) An amplifier circuit and (b) a sketch of the magnitude of its transfer function.

Solution
Direct analysis of the circuit in Fig. D.7(a) results in the transfer function

Vo _ I - S—
1 +Mx6\,ﬁ|t +1)

v,

s

which can be seen to be that of a low-pass STC circuit with a dc gain ¢ = =100 (or, equiva-
lently, 40 dB) and a time constant 7= RCy(—g + 1) = 100 x 10° x 10 x 1072 x 101 Z10%s
which corresponds to a fi =1/7=10* rad/s i is ske .
iy D requency @, = 1/7= 10" rad/s. The magnitude response is sketched in

D.3.2 High-Pass Circuits

The transfer functi ig ircui
e unction 7(s) of an STC high-pass circuit always can be expressed in the

Ks
T(s) = ——
(s) s+ @, ®-3)
which for physical frequencies s = jw becomes
. K
T(jo) = ———
Jo) 1-jo,/ o ©H

where K denotes the gain as s or @ aj U~Omn:0m infinity and 1s the mve ©
y) y oy se of the time

w,=1/7
The magnitude response ’

T K .
T(jo) = ——= ®.7)

Ji+ (oo

and the phase response

o(w) = tan” (w,/ ®) D.8)




D.4 STEP RESPONSE OF STC CIRCUITS

20 log _ D. m For the situation discussed in Exercise D4, if R= 10 kQ. find the capacitor values that result in the cir-
- cuithaving a high- frequency transmission of 0.5 V/V and a corner frequency @, = 10 rad/s.
A€ -C=5F
0 D6 Find the Fa?@m@:gg cain, the 3-dB fr equency \9 and E@ gain at \ =1Hzof an om@aoz:o? coupled
Esm:m@n shown in Fig. MU 6. >vvcEa mﬁ voltage mE@rmmn to be ideal.
-10
+20 dB/decade
—20,
> — (log scale
v o1 o (log )
(@)
()
4
90°
=
a D.4 STEP RESPONSE OF STC CIRCUITS
5.7°

—45° | decade X X . .
Y In this section we consider the response of STC circuits to the step-function signal shown in

Fig. D.9. Knowledge of the step response enables rapid evaluation of the response to other
switching-signal waveforms, such as pulses and square waves.

D.4.1 Low-Pass Circuits

®) In response to an input step signal of height S, a low-pass STC circuit (with a dc gain K = 1)
produces the waveform shown in Fig. D.10. Note that while the input rises from 0 to S at 7 =0,
the output does not respond immediately to this transient and simply begins to rise exponen-

|
“
~ w
L > » — (log scale
1 0 f wp (0B 502

FIGURE D.8 (a) Magnitude and (b) phase response of STC circuits of the high-pass type.

are sketched in Fig. D.8. As in the low-pass case, the magnitude and phase curves are well tially toward the final dc value of the input, S. In the long term—that is, for # > 7—the output
defined by straight-line asymptotes. Because of the similarity (or, more m@?o@duﬁq, duality) approaches the dc value S, a manifestation of the fact that low-pass circuits faithfully pass dc.
with the low-pass case, no further explanation will be given. The equation of the output waveform can be obtained from the expression
: = - e YOy =Yoo= (Yo=Yo)e™ (D.9)
_EXERCISES ,. L | ! 2 e : where Y., denotes the final value or the value toward which the output is heading and ¥,.

denotes the value of the output immediately after # = 0. This equation states that the output at
any time t is equal to the difference between the final value Y., and a gap that has an initial
value of Y.. - Y, and is “shrinking” exponentially. In our case, Y., = S and Y, = 0; thus,

y(t) = S(1-¢*%) (D.10)
x(1)
‘ . o mc»m,,mn,. . -
oo u_f&wrﬁ&w . , .
D4 Find En transfer »:un:@: v 3 of the circuit in T: D.2. What type of STC nefwork ts it? H
Ans. 7(5) = L - - , ‘ . 0 -+

Cit s+ :\Aﬁ_ + C,)R]
: FIGURE D.9 A step-function signal of height S.
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FIGURE D.10 The output y(#) of a low-pass STC circuit excited by a step of height S.

1)

0 T L !
T
FIGURE D.11 The output y(z) of a high-pass STC circuit excited by a step of height S.

The reader’s attention is drawn to the slope of the tangent to y(¢) at ¢ = 0, which is indicated
in Fig. D.10.

D.4.2 High-Pass Circuits

The response of an STC high-pass circuit (with a high-frequency gain K'=1) to an input step
of height S is shown in Fig. D.11. The high-pass circuit faithfully transmits the transient part of
the input signal (the step change) but blocks the dc. Thus the output at 7= 0 follows the input,

. =S
and then it decays toward zero,
Y.=0

Substituting for ¥, and Y. in Eq. (D.9) results in'the output y(),
y(1) = Se’* (D.11)

The reader’s attention is drawn to the slope of the tangent to y(#) at =0, indicated in Fig. D.11.

This example is a continuation of the problem considered in Example D.3. For an input v that is
‘a 10-V step, find the condition under which the output v, is a perfect step.

Solution
Following the analysis in Example D.3, which s illustrated in Fig. D.3, we have

o1 = k,110(1 =™ H)]

where
e Fe
R, +R,
and
- — —t/T
Vg2 =k (10e77)
where
k=51
CC+G,
and
. 7= (C;+ Cy)(R/IR)
Thus

Up = Up1 + Vo2

e

10k, +10e™ (k, ~ k,)

It follows that the output can be made a perfect step of height 10k, volts if we arrange that

ko=k,

that is, if the resistive voltage-divider ratio is made equal to the capacitive voltage divider ratio.

This example illustrates an important technique, namely, that of the “compensated attenuator.”
An application of this technique is found in the design of the oscilloscope probe. The oscilloscope
probe problem is investigated in Problem D.3

EXERCISES

D9 .Eﬁ NSEE - circuit of Fig. mU 6 is maa sau asi
m:& source %B delive) w@
Rmuvwﬁo@ is 100 kQ ?.E .n:m time no:mr:: z m:a U A - 9< -

.c::ag @6 nﬁoES: Tm. U m ,EE Q_ Qlcmhm xl ZC m:a ~ c _Tis_v n 51< wﬁmﬁ
Ans, 5e7! o

% D.5 PULSE RESPONSE OF STC CIRCUITS -

Figure D.12 shows a pulse signal whose height is 2 and whose width is 7. We wish to find
the response of STC circuits to input signals of this form. Note at the outset that a pulse can
be considered as the sum of two steps: a positive one of height P occurring at t = 0 and a
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FIGURE D.12 A pulse signal with height P and
width T.

0 t

negative one of height P occurring at r =T7. Thus the response of a linear circuit to the pulse
signal can be obtained by summing the responses to the two step signals.

D.5.1 Low-Pass Circuits
Figure D.13(a) shows the response of a low-pass STC circuit (having unity dc mm.:c to an
input pulse of the form shown in Fig. D.12. In this case we have mwm:,BQ.w that the time con-
stant 7is in the same range as the pulse width 7. As shown, the LP circuit does not respond
immediately to the step change at the leading edge of the w:_m.o“ rather, the o_..:vE starts to
rise exponentially toward a final value of P. This exponential rise, however, will be mﬁowmma
at time 7 = T, that is, at the trailing edge ,of the pulse when the input undergoes a negative
step change. Again the output will respond by starting an exponential decay toward the m:.m_
value of the input, which is zero. Finally, note that the area under .Em wzﬁsn waveform will
be equal to the area under the input pulse waveform, since the LP circuit 3.::?:% passes de.
A low-pass effect usually occurs when a pulse signal from one part of an electronic sys-
tem is connected to another. The low-pass circuit in this case is mod.:wm by m.ﬁ o:ﬁp.: resis-
tance (Thévenin’s equivalent resistance) of the system part mnoﬁ which Em w_ma.w_ originates
and the input capacitance of the system part to which the signal is fed. This cswqoﬁmzm low-
pass filter will cause distortion—of the type shown in Fig. O.S@o‘.% the n:_ww signal. In a
well-designed system such distortion is kept to a low value by arranging that ﬁ.sm time SESE
7be much smaller than the pulse width 7. In this case the result will be a wE.U_E Eczm_:m of
the pulse edges, as shown in Fig. D.13(b). Note, however, that the edges are still exponential.

©
FIGURE D.13 Pulse responses of three STC low-pass circuits.

D.5 PULSE RESPONSE OF STC CIRCUITS

The distortion of a pulse signal by a parasitic (i.e., unwanted) low-pass circuit is mea-
sured by its rise time and fall time. The rise time is conventionally defined as the time taken
by the amplitude to increase from 10% to 90% of the final value. Similarly, the fall time is
the time during which the pulse amplitude falls from 90% to 10% of the maximum value.
These definitions are illustrated in Fig. D.13(b). By use of the exponential equations of the
rising and falling edges of the output waveform, it can be easily shown that

fo=1,=221 ‘ (D.12)

which can be also expressed in terms of f, = @, /27 = 1/27T as

1, = 1, =033 (D.13)
: fo

Finally, we note that the effect of the parasitic low-pass circuits that are always present in

a system is to “slow down” the operation of the system: To keep the signal distortion

within acceptable limits, one has to use a relatively long pulse width (for a given low-pass

time constant).

The other extreme case—namely, when 7is much larger than 7—is illustrated in Fig.
D.13(c). As shown, the output waveform rises exponentially toward the level P. However,
since 7 > T, the value reached at ¢ = T will be much smaller than P. At ¢ = T the output
waveform starts its exponential decay toward zero. Note that in this case the output wave-
form bears little resemblance to the input pulse. Also note that because 7> 7 the portion of
the exponential curve from ¢ =0 to ¢ = T is almost linear. Since the slope of this linear curve
is proportional to the height of the input pulse, we see that the output waveform approximates
the time integral of the input pulse. That is, a low-pass network with a large time constant
approximates the operation of an integrator.

D.5.2 High-Pass Circuits

Figure D.14(a) shows the output of an STC HP circuit (with unity high-frequency gain)
excited by the input pulse of Fig. D.12, assuming that 7 and T are comparable in value. As
shown, the step transition at the leading edge of the input pulse is faithfully reproduced at the
output of the HP circuit. However, since the HP circuit blocks dc, the output waveform imme-
diately starts an exponential decay toward zero. This decay process is stopped at ¢ = T, when
the negative step transition of the input occurs and the HP circuit faithfully reproduces it. Thus
at ¢ = T the output waveform exhibits an undershoot. Then it starts an exponential decay
toward zero. Finally, note that the area of the output waveform above the zero axis will be
equal to that below the axis for a total average area of zero, consistent with the fact that HP cir-
cuits block dc.

In many applications an STC high-pass circuit is used to couple a pulse from one part of a
system to another part. In such an application it is necessary to keep the distortion in the pulse
shape as small as possible. This can be accomplished by selecting the time constant 7 to be
much longer than the pulse width 7. If this is indeed the case, the loss in amplitude during the
pulse period 7" will be very small, as shown in Fig. D.14(b). Nevertheless, the output wave-
form still swings negatively, and the area under the negative portion will be equal to that under
the positive portion.

Consider the waveform in Fig. D.14(b). Since 7 is much larger than 7, it follows that the
portion of the exponential curve from =0 to 7 = 7'will be almost linear and that its slope will
be equal to the slope of the exponential curve at t = 0, which is P/z. We can use this value of
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FIGURE D.14 Pulse responses of three STC high-pass circuits.

the slope to determine the loss in amplitude AP as

ap=Er (D.14)
T
on the input pulse is usually specified in terms

istortion effect of the high-pass circuit fied in
e p I is quantity is taken as an indication of

of the per-unit or percentage loss in pulse height. Th
the “sag” in the output pulse, -
AP 100 (D.15)

Percentage sag = >

Thus

Percentage sag = w x 100 (D.16)
magnitude of the undershoot at # = Tis equal to AP. ]
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PROBLEMS

pul n  low-pass STC ciruit, as hown in Fig. D 13(c .uhwwuao . find the

_outpuf voltage at = T. Also, find the difference i the slope of the rising portion of the output wave-

format = pressed as a percentage of theslopeatz=0).

, D.14 The uipul of an »ermm_. me_\ is \nou:.wmﬁm @,E@ Ewmﬁ of another stage via a n,.wwwnmmun,o C. If the
~ first stage has an output resistance of 10 kO, and the second stage has an input resistance of 40 kQ. find

o Eﬁ.c@mbm .

.‘;,,‘c_m\»;ﬁm:.ﬁmmwwﬂﬂ oﬁ%ﬂ&?,wmanoz.wnwE o.w _o,ovtw Wm ,nxwmmm g«w.,wimo owT< ro@z _mua So.bm
S widih Calculate ,Eo value of the undershoot in the output waveform. : : :

Ans. 0.632 V.

PROBLEMS

the minimum value of € such that a 10-s pulse exhibits less than 1% sag

D.1 Consider the circuit of Fig. D.3(a) and the equivalent
shown in (d) and (e). There, the output, v, = vp; + Vg, is the
sum of outputs of a low-pass and a high-pass circuit, each
with the time constant 7= (C; + C,)(R//R;). What is the con-
dition that makes the contribution of the low-pass circuit at
zero frequency equal to the contribution of the high-pass cir-
cuit at infinite frequency? Show that this condition can be
expressed as C;R, = C,R,. If this condition applies, sketch
_5 /V | versus frequency for the case R, = R,.

D.2 Use the voltage divider rule to find the transfer function
V,(s)/V(s) of the circuit in Fig. D.3(a). Show that the transfer
function can be made independent of frequency if the condi-
tion C,R; = C,R, applies. Under this condition the circuit is
called a compensated attenuator. Find the transmission of the
compensated attenuator in terms of R, and R,.

D**D,3 The circuit of Fig. D.3(a) is used as a compensated
attenuator (see Problems D.1 and D.2) for an oscilloscope
probe. The objective is to reduce the signal voltage applied to
the input amplifier of the oscilloscope, with the signal attenu-
ation independent of frequency. The probe itself includes R,
and C,, while R, and C, model the oscilloscope input circuit.
For an oscilloscope having an input resistance of 1 MQ and
an input capacitance of 30 pF, design a compensated “10-to-1

probe”—that is, a probe that attenuates the input signal by a
factor of 10. Find the input impedance of the probe when
connected to the oscilloscope, which is the impedance seen
by v in Fig. D.3(a). Show that this impedance is 10 times
higher than that of the oscilloscope itself. This is the great
advantage of the 10:1 probe.

D.4 In the circuits of Figs. D.4 and D.5, let L= 10 mH, C =
0.01 uF, and R = 1 kQ. At what frequency does a phase angle i
of 45° occur?

*D.5 Consider a voltage amplifier with an open-circuit
voltage gain A, = —-100 V/V, R, =0, R; = 10 kQ, and an
input capacitance C; (in parallel with R;) of 10 pF. The
amplifier has a feedback capacitance (a capacitance con-
nected between output and input) Cy= 1 pF. The amplifier is
fed with a voltage source V having a resistance R, = 10 kQ.
Find the amplifier transfer function V,(s)/V,(s) and sketch
its magnitude response versus frequency (dB vs frequency) i
on a log axis.

D.6 For the circuit in Fig. PD.6 assume the voltage ampli-
fier to be ideal. Derive the transfer function V,(s)/V (s). What
type of STC response is this? For C=0.01 uF and R = 100 k€2,
find the corner frequency.




FIGURE PD.6

D.7 For the circuits of Figs. D.4(b) and D.5(b), find vy(¢) if
yis a 10-V step, R=1kQ, and L= 1 mH.

D.8 Consider the exponential response of an STC low-pass
circuit to a 10-V step input. In terms of the time constant 7,
find the time taken for the output to reach 5V, 9V, 9.9V,
and 9.99 V.

D.9 The high-frequency response of an oscilloscope is spec-
ified to be like that of an STC LP circuit with a 100-MHz cor-
ner frequency. If this oscilloscope is used to display an ideal
step waveform, what rise time (10% to 90%) would you
expect to observe?

D.10 An oscilloscope whose step response is like that of a
low-pass STC circuit has a rise time of #, seconds. If an input
signal having a rise time of #, seconds is displayed, the wave-
form seen will have a rise time 7; seconds, which can be
found using the empirical formula 7, = m + bmv.. Ifz,=35ns,

what is the 3-dB frequency of the oscilloscope? What is the
observed rise time for a waveform rising in 100 ns, 35 ns, and

APPENDIX D SINGLE-TIME-CONSTANT CIRCUITS

10 ns? What is the actual rise time of a waveform whose dis-
played rise time is 49.5 ns?

D.11 A pulse of 10-ms width and 10-V amplitude is trans-
mitted through a system characterized as having an STC
high-pass response with a corner frequency of 10 Hz. What
undershoot would you expect?

D.12 An RC differentiator having a time constant 7 is used
to implement a short-pulse detector. When a long pulse with
T > tis fed to the circuit, the positive and negative peak out-
puts are of equal magnitude. At what pulse width does the
negative output peak differ from the positive one by 10%?

D.13 A high-pass STC circuit with a time constant of 1 ms
is excited by a pulse of 10-V height and 1-ms width. Calcu-
late the value of the undershoot in the output waveform. If an
undershoot of 1 V or less is required, what is the time con-
stant necessary?

DD.14 A capacitor C is used to couple the output of an
amplifier stage to the input of the next stage. If the first stage
has an output resistance of 2 kQ and the second stage has an
input resistance of 3 kQ, find the value of C so that a 1-ms
pulse exhibits less than 1% sag. What is the associated 3-dB
frequency?

DD.15 An RC differentiator is used to convert a step volt-
age change V'to a single pulse for a digital-logic application.
The logic circuit that the differentiator drives distinguishes
signals above V/2 as “high” and below V/2 as “low.” What
must the time constant of the circuit be to convert a step input
into a pulse that will be interpreted as “high” for 10 us?

BD.16 Consider the circuit in Fig. D.7(a) with g = -100,
Cy= 100 pF, and the amplifier being ideal. Find the value of
R so that the gain _5\,\ has a 3-dB frequency of 1 kHz.

s

s-Domain Analysis: Poles,
Zeros, and Bode Plots

In analyzing the frequency response of an amplifier, most of the work involves finding the
amplifier voltage gain as a function of the complex frequency s. In this s-domain analysis, a
capacitance C is replaced by an admittance sC, or equivalently an impedance 1/sC, and an
inductance L is replaced by an impedance sL. Then, using usual circuit-analysis techniques,
one derives the voltage transfer function T(s) =V, (s)/V,(s).

EXERCISE

 FIGUREEE1

.
- o
& wvarmw

Once the transfer function 7(s) is obtained, it can be evaluated for physical frequencies
by replacing s by je. The resulting transfer function 7(jw) is in general a complex quantity
whose magnitude gives the magnitude response (or transmission) and whose angle gives the
phase response of the amplifier.

In many cases it will not be necessary to substitute s = jo and evaluate 7( Jj); rather, the
form of 7(s) will reveal many useful facts about the circuit performance. In general, for all




