

FIGURE P5.26

- **5.27** The current I_{CRO} of a small transistor is measured to be 20 nA at 25°C. If the temperature of the device is raised to 85°C, what do you expect I_{CRO} to become?
- *5.28 Augment the model of the npn BJT shown in Fig. 5.20(a) by a current source representing I_{CRO} . Assume that r_o is very large and thus can be neglected. In terms of this addition, what do the terminal currents i_B , i_C , and i_E become? If the base lead is open-circuited while the emitter is connected to ground and the collector is connected to a positive supply, find the emitter and collector currents.
- 5.29 An npn transistor is accidentally connected with collector and emitter leads interchanged. The resulting currents in the normal emitter and base leads are 0.5 mA and 1 mA, respectively. What are the values of α_R and β_R ?
- 5.30 A BJT whose emitter current is fixed at 1 mA has a base-emitter voltage of 0.69 V at 25°C. What base-emitter voltage would you expect at 0°C? At 100°C?
- 5.31 A particular pnp transistor operating at an emitter current of 0.5 mA at 20°C has an emitter-base voltage of 692 mV.
- (a) What does v_{EB} become if the junction temperature rises to 50°C?
- (b) If the transistor has n = 1 and is operated at a fixed emitter-base voltage of 700 mV, what emitter current flows at 20°C? At 50°C?
- 5.32 Consider a transistor for which the base-emitter voltage drop is 0.7 V at 10 mA. What current flows for $V_{RE} = 0.5 \text{ V}$?
- 5.33 In Problem 5.32, the stated voltages are measured at 25°C. What values correspond at -25°C? At 125°C?
- 5.34 Use the Ebers-Moll expressions in Eqs. (5.26) and (5.27) to derive Eq. (5.35). Note that the emitter current is set to a constant value I_E . Ignore the terms not involving exponentials.
- *5.35 Use Eq. (5.35) to plot the i_C - v_{CR} characteristics of an *npn* transistor having $\alpha_F \cong 1$, $\alpha_R = 0.1$, and $I_S = 10^{-15}$ A. Plot

graphs for $I_E = 0.1$ mA, 0.5 mA, and 1 mA. Use an expanded scale for the negative values of v_{BC} in order to show the details of the saturation region. Neglect the Early effect.

*5.36 For the saturated transistor shown in Fig. P5.36, use the EM expressions to show that for $\alpha_F \cong 1$,

$$V_{CEsat} = V_T \ln \left(\frac{\frac{1}{\alpha_R} - \frac{I_{Csat}}{I_E}}{1 - \frac{I_{Csat}}{I_E}} \right)$$

For a BJT with $\alpha_R = 0.1$, evaluate V_{CEsat} for $I_{Csat}/I_E = 0.9$, 0.5, 0.1, and 0.

FIGURE P5.36

- **5.37** Use Eq. (5.36) to plot i_C versus v_{CF} for an npn transistor having $I_s = 10^{-15}$ A and $V_A = 100$ V. Provide curves for $v_{BE} = 0.65, 0.70, 0.72, 0.73, \text{ and } 0.74 \text{ volts. Show the charac-}$ teristics for v_{CF} up to 15 V.
- **5.38** For a particular *npn* transistor operating at a v_{RE} of 670 mV and $I_C = 3$ mA, the $i_C - v_{CE}$ characteristic has a slope of 3×10^{-5} To what value of output resistance does this correspond? What is the value of the Early voltage for this transistor? For operation at 30 mA, what would the output resistance become?
- 5.39 For a BJT having an Early voltage of 200 V, what is its output resistance at 1 mA? At 100 µA?
- **5.40** Measurements of the i_C - v_{CE} characteristic of a smallsignal transistor operating at $v_{BE} = 720$ mV show that $i_C =$ 1.8 mA at $v_{CE} = 2$ V and that $i_C = 2.4$ mA at $v_{CE} = 14$ V. What is the corresponding value of ic near saturation? At what value of v_{CE} is $i_C = 2.0$ mA? What is the value of the Early voltage for this transistor? What is the output resistance that corresponds to operation at $v_{RE} = 720 \text{ mV}$?
- 5.41 Give the pnp equivalent circuit models that correspond to those shown in Fig. 5.20 for the npn case.
- **5.42** A BJT operating at $i_B = 8 \mu A$ and $i_C = 1.2 \text{ mA}$ undergoes a reduction in base current of 0.8 µA. It is found that when v_{CE} is held constant, the corresponding reduction in collector current is 0.1 mA. What are the values of h_{FE} and h_{fe} that apply? If the base current is increased from 8 μ A to 10 μ A

results? Assume $V_A = 100 \text{ V}$.

- **5.43** For a transistor whose β characteristic is sketched in Fig. 5.22, estimate values of \(\beta \) at -55°C, 25°C, and 125°C for $I_c = 100 \,\mu\text{A}$ and 10 mA. For each current, estimate the temperature coefficient for temperatures above and below room temperature (four values needed).
- 5.44 Figure P5.44 shows a diode-connected npn transistor. Since $v_{CR} = 0$ results in active mode operation, the BJT will internally operate in the active mode; that is, its base and collector currents will be related by β_F . Use the EM equations to show that the diode-connected transistor has the i-v characteristics.

$$i = \frac{I_S}{\alpha_F} (e^{w/V_T} - 1) \cong I_S e^{w/V_T}$$

FIGURE P5.44

- **5.45** A BJT for which $\alpha_R = 0.2$ operates with a constant base current but with the collector open. What value of $V_{CE_{col}}$ would you measure?
- **5.46** Find the saturation voltage V_{CEsat} and the saturation resistance R_{CEsat} of an npn BJT operated at a constant base current of 0.1 mA and a forced β of 20. The transistor has $\beta_F = 50$ and $\beta_P = 0.2$.
- ***5.47** Use Eq. (5.47) to show that the saturation resistance $R_{CEsat} \equiv \partial v_{CE}/\partial i_C$ of a transistor operated with a constant base current I_R is given by

is given by
$$R_{CE_{\text{sat}}} = \frac{V_T}{\beta_F I_B} \frac{1}{x(1-x)}$$

$$x = \frac{I_{Csat}}{\beta_F I_B} = \frac{\beta_{forced}}{\beta_F}$$

Find R_{CEsat} for $\beta_{forced} = \beta_E/2$.

- **5.48** For a transistor for which $\beta_F = 70$ and $\beta_R = 0.7$, find an estimate of R_{CEsat} and V_{CEoff} for $I_R = 2$ mA by evaluating V_{CEsat} at $i_C = 3$ mA and at $i_C = 0.3$ mA (using Eq. 5.49). (Note: Because here we are modeling operation at a very low forced β , the value of $R_{CE_{\text{sat}}}$ will be much larger than that given by Eq. 5.48).
- **5.49** A transistor has $\beta_F = 150$ and the collector junction is 10 times larger than the emitter junction. Evaluate V_{CEsat} for $\beta_{\text{forced}}/\beta_F = 0.99, 0.95, 0.9, 0.5, 0.1, 0.01, \text{ and } 0.$

- and v_{CF} is increased from 8 V to 10 V, what collector current 5.50 A particular npn BJT with $v_{RF} = 720$ mV at $i_C = 600 \mu A$, and having $\beta = 150$, has a collector-base junction 20 times larger than the emitter-base junction
 - (a) Find α_F , α_R , and β_R .
 - (b) For a collector current of 5 mA and nonsaturated operation, what is the base-emitter voltage and the base current? (c) For the situation in (b) but with double the calculated base current, what is the value of forced β ? What are the baseemitter and base-collector voltages? What are $V_{CE_{Sat}}$ and $R_{CE_{Sat}}$?
 - *5.51 A BJT with fixed base current has $V_{CE_{\text{sat}}} = 60 \text{ mV}$ with the emitter grounded and the collector open-circuited. When the collector is grounded and the emitter is opencircuited, V_{CEsat} becomes -1 mV. Estimate values for β_E and β_E for this transistor.
 - **5.52** A BJT for which $I_B = 0.5$ mA has $V_{CEsat} = 140$ mV at $I_C = 10$ mA and $V_{CEsat} = 170$ mV at $I_C = 20$ mA. Estimate the values of its saturation resistance, R_{CEsat}, and its offset voltage, V_{CEoff} . Also, determine the values of β_F and β_R .
 - **5.53** A BJT for which BV_{CBO} is 30 V is connected as shown in Fig. P5.53. What voltages would you measure on the collector, base, and emitter?

FIGURE P5.53

SECTION 5.3: THE BJT AS AN AMPLIFIER AND AS A SWITCH

- 5.54 A common-emitter amplifier circuit operated with $V_{CC} = +10 \text{ V}$ is biased at $V_{CE} = +1 \text{ V}$. Find the voltage gain, the maximum allowed output negative swing without the transistor entering saturation, and the corresponding maximum input signal permitted.
- **5.55** For the common-emitter circuit in Fig. 5.26(a) with V_{CC} = +10 V and $R_C = 1 \text{ k}\Omega$, find V_{CF} and the voltage gain at the following dc collector bias currents: 1 mA, 2 mA, 5 mA, 8 mA. and 9 mA. For each, give the maximum possible positive- and