EE 321 Analog Electronics, Fall 2011 Homework #8 solution

5.103. An npn BJT with grounded emitter is operated with $V_{BE} = 0.700$ V, at which the collector current is 1 mA. A 10 k Ω resistor connects the collector to +15 V supply. What is the resulting collector voltage V_C ? Now, if a signal applied to the base raised v_{BE} to 705 mV, find the resulting total collector current i_C and total collector voltage v_C using the exponential i_C - v_{BE} relationship. For this situation, what are v_{be} and v_c ? Calculate the voltage gan v_c/v_{be} . Compare with the value obtained using the small-signal approximation, that is $-g_m R_C$. The output voltage is $V_C = V_{CC} - I_C R_C = 15 - 1 \times 10 = 5$ V. Next we rais the base voltage.

The output voltage is $V_C = V_{CC} - I_C R_C = 15 - 1 \times 10 = 5$ V. Next we rais the base voltage. First we want to find the value of I_C from the bias point, and

$$i_C = I_S e^{\frac{v_{BE}}{V_T}}$$

$$I_S = \frac{i_C}{e^{\frac{v_{BE}}{V_T}}} = \frac{1 \times 10^{-3}}{e^{\frac{0.7}{25 \times 10^{-3}}}} = 6.91 \times 10^{-16} \,\mathrm{A}$$

Next for $v_{BE} = 0.705$ V:

$$i_C = I_S e^{\frac{v_{BE}}{V_T}} = 6.91 \times 10^{-16} \times e^{\frac{0.705}{25 \times 10^{-3}}} = 1.22 \,\mathrm{mA}$$

$$v_C = V_{CC} - i_C R_C = 15 - 1.22 \times 10 = 2.8 \,\mathrm{V}$$

For this situation $v_{be} = 5 \times 10^{-3}$, and $v_c = 2.8 - 5 = -2.2$ V, and the gain is $v_c/v_{be} = -440$. The gain using the linear approximation is

$$A_{vo} = -\frac{I_C R_C}{V_T} = -\frac{1 \times 10}{25 \times 10^{-3}} = 400$$

5.104. A transitor with $\beta = 120$ is biased to operate at a DC collector current of 1.2 mA. Find the values of g_m , r_{π} , and r_e . Repeat for a bias current of $120 \,\mu\text{A}$.

$$g_m = \frac{I_C}{V_T} = \frac{1.2}{25} = 0.048 \,\Omega^{-1}$$
$$r_\pi = \frac{\beta}{g_m} = \frac{120}{0.048} = 2500 \,\Omega$$
$$r_e = \frac{\alpha}{g_m} = \frac{\beta}{\beta + 1} \frac{1}{g_m} = \frac{120}{121} \frac{1}{0.048} = 20.7 \,\Omega$$

If instead the transistor is biased at $I_C = 120 \,\mu\text{A}$, we get

$$g_m = \frac{I_C}{V_T} = \frac{0.12}{25} = 0.0048 \,\Omega^{-1}$$
$$r_\pi = \frac{\beta}{q_m} = \frac{120}{0.0048} = 25 \,\mathrm{k}\Omega$$

$$r_e = \frac{\alpha}{g_m} = \frac{\beta}{\beta + 1} \frac{1}{g_m} = \frac{120}{121} \frac{1}{0.0048} = 207 \,\Omega$$

5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various conditions. Provide the missing entries.

Transistor	a	ь	¢	d	е	f	g
α	1.000					0.90	
β		100		00		v	
I_C (mA)	1.00		1.00				
I_E (mA)		1.00				5	
$I_{\mathcal{B}}(\mathrm{mA})$			0.020				1.10
g_m (mA/V)					1		700
$r_e(\Omega)$				25	100		C
$r_{\pi}(\Omega)$					$10.1~\mathrm{k}\Omega$		

(Note: Isn't it remarkable how much two parameters can reveal?)

I will just provide the explicit equations for the first column, (a):

$$\begin{split} \beta &= \frac{\alpha}{1-\alpha} \\ I_E &= \frac{I_C}{\alpha} \\ I_B &= \frac{I_C}{\beta} \\ g_m &= \frac{I_C}{V_T} \\ r_e &= \frac{\alpha}{g_m} \\ r_\pi &= \frac{\beta}{g_m} \\ \end{split}$$

5.114. A biased BJT operates as a grounded-emitter amplifier between a signal source, with a source resistance of $10 k\Omega$, connected to the base and a $10 k\Omega$

load connected as a collector resistance R_c . In the corresponding model, g_m is 40 mA/V and r_{π} is 2.5 k Ω . Draw the complete amplifier model using the hybrid- π BJT equivalent circuit. Calculate the overall voltage gain v_c/v_s . What is the value of BJT β implied by the values of the model parameters? To what value must β be increased to double the overall voltage gain?

The value of β can be found from

$$r_{\pi} = \frac{\beta}{g_m}$$

or

$$\beta = r_{\pi}g_m = 2.5 \times 10^3 \times 0.04 = 100$$

To double the gain we would want to double the factor

$$\frac{r_{\pi}}{R_s + r_{\pi}}$$

It is currently equal to

$$\frac{2.5}{10+2.5} = 0.2$$

To double it we would need to change r_{π} :

$$\frac{r_{\pi}}{R_s + r_{\pi}} = 0.4$$

$$r_{\pi} = \frac{0.4}{0.6} R_s = 0.67 R_s = 6.7 \text{ k}\Omega$$

The factor increase in β is the same as the factor increase in r_{π} :

$$\beta_{\rm new} = \beta_{\rm old} \frac{r_{\pi \, \rm new}}{r_{\pi} \, \rm old} = 100 \times \frac{6.7}{2.5} = 268$$