FIGURE P5.99 ***D5.100** For the circuit in Fig. P5.100, assuming all transistors to be identical with β infinite, derive an expression for the output current I_O , and show that by selecting $$R_1 = R_2$$ and keeping the current in each junction the same, the current $I_{\mathcal{O}}$ will be $$I_O = \frac{\alpha V_{CC}}{2R_E}$$ which is independent of V_{BE} . What must the relationship of R_E to R_1 and R_2 be? For $V_{CC}=10$ V and assuming $\alpha=1$ and $V_{BE}=0.7$ V, design the circuit to obtain an output current of FIGURE P5.100 0.5 mA. What is the lowest voltage that can be applied to the collector of Q_3 ? **D5.101** For the circuit in Fig. P5.101 find the value of R that will result in $I_O \simeq 2$ mA. What is the largest voltage that can be applied to the collector? Assume $|V_{BE}| = 0.7 \text{ V}$. FIGURE P5.101 ## SECTION 5.6: SMALL-SIGNAL OPERATION AND MODELS **5.102** Consider a transistor biased to operate in the active mode at a dc collector current I_C . Calculate the collector signal current as a fraction of I_C (i.e., i_c/I_C) for input signals v_{be} of +1 mV, -1 mV, +2 mV, -2 mV, +5 mV, -5 mV, +8 mV, -8 mV, +10 mV, -10 mV, +12 mV, and -12 mV. In each case do the calculation two ways: - (a) using the exponential characteristic, and - (b) using the small-signal approximation. Present your results in the form of a table that includes a column for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation. **5.103** An npn BJT with grounded emitter is operated with V_{BE} = 0.700 V, at which the collector current is 1 mA. A 10-kΩ resistor connects the collector to a +15-V supply. What is the resulting collector voltage V_c ? Now, if a signal applied to the base raises v_{BE} to 705 mV, find the resulting total collector current i_C and total collector voltage v_C using the exponential i_C - v_{BE} relationship. For this situation, what are v_{be} and v_c ? Calculate the voltage gain v_c / v_{be} . Compare with the value obtained using the small-signal approximation, that is, $-g_m R_C$. **5.104** A transistor with $\beta = 120$ is biased to operate at a dc collector current of 1.2 mA. Find the values of g_m , r_{π} , and r_e . Repeat for a bias current of 120 μ A. **5.105** A pnp BJT is biased to operate at $I_C = 2.0$ mA. What is the associated value of g_m ? If $\beta = 50$, what is the value of the small-signal resistance seen looking into the emitter (r_e) ? Into the base (r_π) ? If the collector is connected to a 5-k Ω load, with a signal of 5-mV peak applied between base and emitter, what output signal voltage results? **D5.106** A designer wishes to create a BJT amplifier with a g_m of 50 mA/V and a base input resistance of 2000 Ω or more. What emitter-bias current should he choose? What is the minimum β he can tolerate for the transistor used? **5.107** A transistor operating with nominal g_m of 60 mA/V has a β that ranges from 50 to 200. Also, the bias circuit, being less than ideal, allows a $\pm 20\%$ variation in I_C . What are the extreme values found of the resistance looking into the base? **5.108** In the circuit of Fig. 5.48, V_{BE} is adjusted so that $V_C = 2$ V. If $V_{CC} = 5$ V, $R_C = 3$ kC2, and a signal $v_{be} = 0.005$ sin ωr volts is applied, find expressions for the total instantaneous quantities $i_C(t)$, $v_C(t)$, and $i_B(t)$. The transistor has $\beta = 100$. What is the voltage gain? *D5.109 We wish to design the amplifier circuit of Fig. 5.48 under the constraint that V_{CC} is fixed. Let the input signal $v_{be} = \hat{V}_{be}$ sin ωt , where \hat{V}_{be} is the maximum value for acceptable linearity. For the design that results in the largest signal at the collector, without the BJT leaving the active region, show that $$R_C I_C = (V_{CC} - 0.3 - \hat{V}_{be}) / (1 + \frac{\hat{V}_{be}}{V_T})$$ and find an expression for the voltage gain obtained. For $V_{CC} = 5 \text{ V}$ and $\hat{V}_{be} = 5 \text{ mV}$, find the dc voltage at the collector, the amplitude of the output voltage signal, and the voltage gain. **5.110** The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various conditions. Provide the missing entries. **5.111** A BJT is biased to operate in the active mode at a dc collector current of 1.0 mA. It has a β of 120. Give the four small-signal models (Figs. 5.51 and 5.52) of the BJT complete with the values of their parameters. **5.112** The transistor amplifier in Fig. P5.112 is biased with a current source I and has a very high β . Find the dc voltage at the collector, V_C . Also, find the value of g_m . Replace the transistor with the simplified hybrid- π model of Fig. 5.51(a) (note that the dc current source I should be replaced with an open circuit). Hence find the voltage gain v_L/v_L . ## FIGURE P5.112 **5.113** For the conceptual circuit shown in Fig. 5.50, $R_C = 2 \text{ kG}$, $g_m = 50 \text{ mA/V}$, and $\beta = 100$. If a peak-to-peak output voltage of 1 V is measured at the collector, what ac input voltage and current must be associated with the base? **5.114** A biased BJT operates as a grounded-emitter amplifier between a signal source, with a source resistance of 10 Ω C, connected to the base and a 10- Ω C load connected as a collector resistance R_C . In the corresponding model, g_m is 40 mA/V | Transistor | a | b | c | d | e | f | g | |------------------------------------|-------|------|-------|----|------------------------|------|------| | α | 1.000 | | | | | 0.90 | | | β | | 100 | | 00 | | * | | | $I_C(\text{mA})$ | 1.00 | | 1.00 | | | | | | I_C (mA)
I_E (mA) | | 1.00 | | | | 5 | | | I_B (mA)
g_m (mA/V) | | | 0.020 | | | | 1.10 | | $g_m (\text{mA/V})$ | | | | | | | 700 | | $r_e(\Omega)$
$r_{\pi}(\Omega)$ | | | | 25 | 100 | | | | $r_{\pi}(\Omega)$ | | | | | $10.1 \text{ k}\Omega$ | | | (Note: Isn't it remarkable how much two parameters can reveal?)