and r_π is $2.5~\mathrm{k}\Omega$. Draw the complete amplifier model using the hybrid- π BJT equivalent circuit. Calculate the overall voltage gain (v_e/v_s) . What is the value of BJT β implied by the values of the model parameters? To what value must β be increased to double the overall voltage gain? **5.115** For the circuit shown in Fig. P5.115, draw a complete small-signal equivalent circuit utilizing an appropriate T model for the BJT (use $\alpha = 0.99$). Your circuit should show the values of all components, including the model parameters. What is the input resistance $R_{\rm in}$? Calculate the overall voltage gain $(v_o/v_{\rm sip})$. FIGURE P5.115 **5.116** In the circuit shown in Fig. P5.116, the transistor has a β of 200. What is the dc voltage at the collector? Find the input resistances R_{ib} and R_{in} and the overall voltage gain FIGURE P5.116 $(v_o/v_{\rm sig})$. For an output signal of ± 0.4 V, what values of $v_{\rm sig}$ and v_b are required? **5.117** Consider the augmented hybrid- π model shown in Fig. 5.58(a). Disregarding how biasing is to be done, what is the largest possible voltage gain available for a signal source connected directly to the base and a very-high-resistance load? Calculate the value of the maximum possible gain for $V_A = 25 \, \mathrm{V}$ and $V_A = 250 \, \mathrm{V}$. **5.118** Reconsider the amplifier shown in Fig. 5.53 and analyzed in Example 5.14 under the condition that β is not well controlled. For what value of β does the circuit begin to saturate? We can conclude that large β is dangerous in this circuit. Now, consider the effect of reduced β , say, to β = 25. What values of r_{er} r_{gm} and r_{π} result? What is the overall voltage gain? (*Note:* You can see that this circuit, using basecurrent control of bias, is very β -sensitive and usually *not recommended.*) **5.119** Reconsider the circuit shown in Fig. 5.55(a) under the condition that the signal source has an internal resistance of 100 Ω . What does the overall voltage gain become? What is the largest input signal voltage that can be used without output-signal clipping? **D5.120** Redesign the circuit of Fig. 5.55 by raising the resistor values by a factor n to increase the resistance seen by the input v_i to 75 Ω . What value of voltage gain results? Grounded-base circuits of this kind are used in systems such as cable TV, in which, for highest-quality signaling, load resistances need to be "matched" to the equivalent resistances of the interconnecting cables. **5.121** Using the BJT equivalent circuit model of Fig. 5.52(a), sketch the equivalent circuit of a transistor amplifier for which a resistance R_e is connected between the emitter and ground, the collector is grounded, and an input signal source v_b is connected between the base and ground. (It is assumed that the transistor is properly biased to operate in the active region.) Show that: (a) the voltage gain between base and emitter, that is, $v_e/\sqrt{v_b},$ is given by $$\frac{v_e}{v_b} = \frac{R_e}{R_e + r_e}$$ (b) the input resistance, $$R_{\rm in} \equiv \frac{v_b}{i_b} = (\beta + 1)(R_e + r_e)$$ Find the numerical values for (v_e/v_b) and $R_{\rm in}$ for the case $R_e = 1 \text{ k}\Omega$, $\beta = 100$, and the emitter bias current $I_E = 1 \text{ mA}$. **5.122** When the collector of a transistor is connected to its base, the transistor still operates (internally) in the active region because the collector–base junction is still in effect reverse biased. Use the simplified hybrid-π model to find the incremental (small-signal) resistance of the resulting twoterminal device (known as a diode-connected transistor.) **P5.123 Design an amplifier using the configuration of Fig. 5.55(a). The power supplies available are $\pm 10 \text{ V}$. The input signal source has a resistance of 100Ω , and it is required that the amplifier input resistance match this value. (Note that $R_{\rm in} = r_e / l R_E = r_{er}$) The amplifier is to have the greatest possible voltage gain and the largest possible output signal but retain small-signal linear operation (i.e., the signal component across the base-emitter junction should be limited to no more than 10 mV). Find appropriate values for R_E and R_C . What is the value of voltage gain realized? *5.124 The transistor in the circuit shown in Fig. P5.124 is biased to operate in the active mode. Assuming that β is very large, find the collector bias current I_C . Replace the transistor with the small-signal equivalent circuit model of Fig. 5.52(b) (remember to replace the dc power supply with a short circuit). Analyze the resulting amplifier equivalent circuit to show that $$\frac{v_{o1}}{v_i} = \frac{R_E}{R_E + r_e}$$ $$\frac{v_{o2}}{v_i} = \frac{-\alpha R_C}{R_E + r_e}$$ Find the values of these voltage gains (for $\alpha \simeq 1$). Now, if the terminal labeled v_{o1} is connected to ground, what does the voltage gain v_{o2}/v_l become? FIGURE P5.124 ## SECTION 5.7: SINGLE-STAGE BJT AMPLIFIERS **5.125** An amplifier is measured to have $R_i=10~{\rm k}\Omega,~A_{vo}=100~{\rm V/V},~{\rm and}~R_o=100~{\rm \Omega}.$ Also, when a load resistance R_L of 1 k Ω is connected between the output terminals, the input resistance is found to decrease to 8 k Ω . If the amplifier is fed with a signal source having an internal resistance of 2 k Ω , find G_m A_v , G_{vo} , G_v , R_{out} , and A_i . **5.126** Figure P5.126 shows an alternative equivalent circuit for representing *any* linear two-port network including voltage amplifiers. This non-unilateral equivalent circuit is based on the *g*-parameter two-port representation (see Appendix B). (a) Using the values of R_b A_{vor} and R_o found in Example 5.17 together with the measured value of $R_{\rm in}$ of 400 k Ω obtained when a load R_L of 10 k Ω is connected to the output, determine the value of the feedback factor f. (b) Now, use the equivalent circuit of Fig. P5.126 to determine the value of $R_{\rm out}$ obtained when the amplifier is fed with a signal generator having $R_{\rm sig}=100~{\rm k}\Omega$. Check your result against that found in Example 5.17. FIGURE P5.126 **5.127** Refer to Table 5.5. By equating the expression for G_v obtained from Equivalent Circuit A to that obtained from Equivalent Circuit C with $G_{vo} = [R_i/(R_l + R_{\rm sig})]A_{vo}$, show that $$\frac{R_{\rm in}}{R_i} \frac{R_{\rm sig} + R_i}{R_{\rm sig} + R_{\rm in}} = \frac{R_L + R_o}{R_L + R_{\rm out}}$$ Now, use this expression to: - (a) Show that for $R_I = \infty$, $R_{in} = R_i$. - (b) Show that for $R_{\text{sig}} = 0$, $R_{\text{out}} = R_o$. (c) Find $R_{\rm out}$ when $R_{\rm sig}=\infty$ (i.e., the amplifier input is open-circuited), and evaluate its value for the amplifier specified in Example 5.17. **5.128** A common-emitter amplifier of the type shown in Fig. 5.60(a) is biased to operate at $I_C=0.2$ mA and has a collector resistance $R_C=24$ k Ω . The transistor has $\beta=100$ and a large V_A . The signal source is directly coupled to the base, and C_{C1} and R_B are eliminated. Find $R_{\rm in}$, the voltage gain A_{zo} , and R_o . Use these results to determine the overall voltage gain when a 10-k Ω load resistor is connected to the collector and the source resistance $R_{zo}=10$ k Ω . **5.129** Repeat Problem 5.128 with a $125-\Omega$ resistance included in the signal path in the emitter. Furthermore, contrast the maximum amplitude of the input sine wave that can be applied with and without R_c assuming that to limit distortion the signal between base and emitter is not to exceed 5 mV. **5.130** For the common-emitter amplifier shown in Fig. P5.130, let $V_{CC}=9$ V, $R_1=27$ k Ω , $R_2=15$ k Ω , $R_E=1.2$ k Ω , and $R_C=2.2$ k Ω . The transistor has $\beta=100$ and $V_A=100$ V.