and r_π is 2.5 k Ω . Draw the complete amplifier model using the hybrid- π BJT equivalent circuit. Calculate the overall voltage gain (v_c/v_s) . What is the value of BJT β implied by the values of the model parameters? To what value must β be increased to double the overall voltage gain? **5.115** For the circuit shown in Fig. P5.115, draw a complete small-signal equivalent circuit utilizing an appropriate T model for the BJT (use α =0.99). Your circuit should show the values of all components, including the model parameters. What is the input resistance $R_{\rm in}$? Calculate the overall voltage gain $(v_{\rm o}/v_{\rm sig})$. FIGURE P5.115 **5.116** In the circuit shown in Fig. P5.116, the transistor has a β of 200. What is the dc voltage at the collector? Find the input resistances R_{th} and R_{in} and the overall voltage gain FIGURE P5.116 $(v_o/v_{\rm sig})$. For an output signal of ± 0.4 V, what values of $v_{\rm sig}$ and v_b are required? **5.117** Consider the augmented hybrid- π model shown in Fig. 5.58(a). Disregarding how biasing is to be done, what is the largest possible voltage gain available for a signal source connected directly to the base and a very-high-resistance load? Calculate the value of the maximum possible gain for $V_A = 25$ V and $V_A = 250$ V. **5.118** Reconsider the amplifier shown in Fig. 5.53 and analyzed in Example 5.14 under the condition that β is not well controlled. For what value of β does the circuit begin to saturate? We can conclude that large β is dangerous in this circuit. Now, consider the effect of reduced β , say, to β = 25. What values of r_e , g_m , and r_π result? What is the overall voltage gain? (*Note:* You can see that this circuit, using basecurrent control of bias, is very β -sensitive and usually *not recommended.*) **5.119** Reconsider the circuit shown in Fig. 5.55(a) under the condition that the signal source has an internal resistance of 100Ω . What does the overall voltage gain become? What is the largest input signal voltage that can be used without output-signal clipping? **D5.120** Redesign the circuit of Fig. 5.55 by raising the resistor values by a factor n to increase the resistance seen by the input v_i to 75 Ω . What value of voltage gain results? Grounded-base circuits of this kind are used in systems such as cable TV, in which, for highest-quality signaling, load resistances need to be "matched" to the equivalent resistances of the interconnecting cables. **5.121** Using the BJT equivalent circuit model of Fig. 5.52(a), sketch the equivalent circuit of a transistor amplifier for which a resistance R_e is connected between the emitter and ground, the collector is grounded, and an input signal source v_b is connected between the base and ground. (It is assumed that the transistor is properly biased to operate in the active region.) Show that: (a) the voltage gain between base and emitter, that is, v_e/v_b , is given by $$\frac{v_e}{v_b} = \frac{R_e}{R_e + r_e}$$ (b) the input resistance, $$R_{\rm in} \equiv \frac{v_b}{i_b} = (\beta + 1)(R_e + r_e)$$ Find the numerical values for (v_e/v_b) and $R_{\rm in}$ for the case $R_e=1~{\rm k}\Omega,~\beta=100$, and the emitter bias current $I_F=1~{\rm mA}$. **5.122** When the collector of a transistor is connected to its base, the transistor still operates (internally) in the active region because the collector-base junction is still in effect reverse biased. Use the simplified hybrid- π model to find the incremental (small-signal) resistance of the resulting twoterminal device (known as a diode-connected transistor.) **D5.123 Design an amplifier using the configuration of Fig. 5.55(a). The power supplies available are ± 10 V. The input signal source has a resistance of 100 Ω , and it is required that the amplifier input resistance match this value. (Note that $R_{\rm in} = r_e$, $I/R_E \simeq r_e$.) The amplifier is to have the greatest possible voltage gain and the largest possible output signal but retain small-signal linear operation (i.e., the signal component across the base–emitter junction should be limited to no more than 10 mV). Find appropriate values for R_E and R_C . What is the value of voltage gain realized? *5.124 The transistor in the circuit shown in Fig. P5.124 is biased to operate in the active mode. Assuming that β is very large, find the collector bias current I_C . Replace the transistor with the small-signal equivalent circuit model of Fig. 5.52(b) (remember to replace the dc power supply with a short circuit). Analyze the resulting amplifier equivalent circuit to show that $$\frac{v_{o1}}{v_i} = \frac{R_E}{R_E + r_e}$$ $$\frac{v_{o2}}{v_i} = \frac{-\alpha R_C}{R_E + r_e}$$ Find the values of these voltage gains (for $\alpha = 1$). Now, if the terminal labeled v_{o1} is connected to ground, what does the voltage gain v_{o2}/v_l become? FIGURE P5.124 ## SECTION 5.7: SINGLE-STAGE BJT AMPLIFIERS **5.125** An amplifier is measured to have $R_i=10~\mathrm{k}\Omega,~A_{vo}=100~\mathrm{V/V},~\mathrm{and}~R_o=100~\Omega.$ Also, when a load resistance R_L of 1 k Ω is connected between the output terminals, the input resistance is found to decrease to 8 k Ω . If the amplifier is fed with a signal source having an internal resistance of 2 k Ω , find $G_m, A_v, G_{vo}, G_v, R_{out},~\mathrm{and}~A_i$. **5.126** Figure P5.126 shows an alternative equivalent circuit for representing *any* linear two-port network including voltage amplifiers. This non-unilateral equivalent circuit is based on the *g*-parameter two-port representation (see Appendix B). (a) Using the values of $R_{\rm h}$, $A_{\rm por}$, and $R_{\rm o}$ found in Example 5.17 together with the measured value of $R_{\rm in}$ of 400 k Ω obtained when a load $R_{\rm L}$ of 10 k Ω is connected to the output, determine the value of the feedback factor f. (b) Now, use the equivalent circuit of Fig. P5.126 to determine the value of $R_{\rm out}$ obtained when the amplifier is fed with a signal generator having $R_{\rm sig}=100~k\Omega.$ Check your result against that found in Example 5.17. FIGURE P5.126 **5.127** Refer to Table 5.5. By equating the expression for G_v obtained from Equivalent Circuit A to that obtained from Equivalent Circuit C with $G_{vo} = [R_i/(R_i + R_{\rm sig})]A_{vo}$, show that $$\frac{R_{\rm in}}{R_i} \frac{R_{\rm sig} + R_i}{R_{\rm cir} + R_{\rm in}} = \frac{R_L + R_o}{R_I + R_{\rm out}}$$ Now, use this expression to: - (a) Show that for $R_L = \infty$, $R_{in} = R_i$. - (b) Show that for $R_{\text{sig}} = 0$, $R_{\text{out}} = R_o$. - (c) Find R_{out} when $R_{\text{sig}} = \infty$ (i.e., the amplifier input is open-circuited), and evaluate its value for the amplifier specified in Example 5.17. **5.128** A common-emitter amplifier of the type shown in Fig. 5.60(a) is biased to operate at $I_C=0.2$ mA and has a collector resistance $R_C=24$ k Ω . The transistor has $\beta=100$ and a large V_A . The signal source is directly coupled to the base, and C_{C1} and R_B are eliminated. Find $R_{\rm in}$, the voltage gain A_{vo} , and $R_{o'}$. Use these results to determine the overall voltage gain when a 10-k Ω load resistor is connected to the collector and the source resistance $R_{vir}=10$ k Ω . **5.129** Repeat Problem 5.128 with a 125-Ω resistance included in the signal path in the emitter. Furthermore, contrast the maximum amplitude of the input sine wave that can be applied with and without R_v assuming that to limit distortion the signal between base and emitter is not to exceed 5 mV. **5.130** For the common-emitter amplifier shown in Fig. P5.130, let $V_{CC}=9$ V, $R_1=27$ k Ω , $R_2=15$ k Ω , $R_E=1.2$ k Ω , and $R_C=2.2$ k Ω . The transistor has $\beta=100$ and $V_A=100$ V. Calculate the dc bias current I_E . If the amplifier operates between a source for which $R_{\rm sig}=10~{\rm k}\Omega$ and a load of $2~{\rm k}\Omega$, replace the transistor with its hybrid- π model, and find the values of $R_{\rm in}$, the voltage gain $v_o/v_{\rm sig}$, and the current gain i_o/i_t . FIGURE P5.130 - **D5.131** Using the topology of Fig. P5.130, design an amplifier to operate between a 10-kΩ source and a 2-kΩ load with a gain $v_o/v_{\rm sig}$ of -8 V/V. The power supply available is 9 V. Use an emitter current of approximately 2 mA and a current of about one-tenth of that in the voltage divider that feeds the base, with the de voltage at the base about one-third of the supply. The transistor available has $\beta = 100$ and $V_A = 100$ V. Use standard 5% resistor (see Appendix G). - **5.132** A designer, having examined the situation described in Problem 5.130 and estimating the available gain to be approximately -8 V/V, wishes to explore the possibility of improvement by reducing the loading of the source by the amplifier input. As an experiment, the designer varies the resistance levels by a factor of approximately 3: R_1 to $82 \text{ k}\Omega$, R_2 to $47 \text{ k}\Omega$, R_E to $3.6 \text{ k}\Omega$, and R_C to $6.8 \text{ k}\Omega$ (standard values of 5%-tolerance resistors). With $V_{CC} = 9 \text{ V}$, $R_{\text{sig}} = 10 \text{ k}\Omega$, $R_L = 2 \text{ k}\Omega$, $\beta = 100$, and $V_A = 100$ V, what does the gain become? Comment. - **D5.133** Consider the CE amplifier circuit of Fig. 5.60(a). It is required to design the circuit (i.e., find values for I, R_B , and R_C) to meet the following specifications: - (a) $R_{in} \cong 5 \text{ k}\Omega$. - (b) the dc voltage drop across R_B is approximately 0.5 V. - (c) the open-circuit voltage gain from base to collector is the maximum possible, consistent with the requirement that the collector voltage never falls by more than approximately $0.5\,\mathrm{V}$ below the base voltage with the signal between base and emitter being as high as $5\ mV$. Assume that $u_{\rm sig}$ is a sinusoidal source, the available supply $V_{CC}=5$ V, and the transistor has $\beta=100$ and a very large Early voltage. Use standard 5%-resistance values, and specify the value of I to one significant digit. What base-to-collector open-circuit voltage gain does your design provide? If $R_{\rm sig}=R_L=10~{\rm k}\Omega$, what is the overall voltage gain? - **D5.134** In the circuit of Fig. P5.134, $v_{\rm sig}$ is a small sinewave signal with zero average. The transistor β is 100. - (a) Find the value of R_E to establish a dc emitter current of about 0.5 mA. - (b) Find R_C to establish a dc collector voltage of about +5 V. (c) For $R_C=10~\mathrm{k}\Omega$ and the transistor $r_o=200~\mathrm{k}\Omega$, draw the small-signal equivalent circuit of the amplifier and determine its overall voltage gain. FIGURE P5.134 - *5.135 The amplifier of Fig. P5.135 consists of two identical common-emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, $R_{\rm in2}$, constitutes the load resistance of the first stage. - (a) For V_{CC} = 15 V, R_1 = 100 k Ω , R_2 = 47 k Ω , R_E = 3.9 k Ω , R_C = 6.8 k Ω , and β = 100, determine the dc collector current and dc collector voltage of each transistor. - (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components. Neglect r_{cl} and r_{c2} . - (c) Find R_{inl} and v_{b1}/v_{sig} for $R_{\text{sig}} = 5 \text{ k}\Omega$. - (d) Find R_{in2} and v_{b2}/v_{b1} . - (e) For $R_L = 2 k\Omega$, find v_o / v_{h2} . - (f) Find the overall voltage gain $v_a/v_{\rm sig}$. ## FIGURE P5.135 **5.136** In the circuit of Fig. P5.136, $v_{\rm sig}$ is a small sine-wave signal. Find $R_{\rm in}$ and the gain $v_o/v_{\rm sig}$. Assume $\beta=100$. If the amplitude of the signal v_{be} is to be limited to 5 mV, what is the largest signal at the input? What is the corresponding signal at the output? ## FIGURE P5.136 - *5.137 The BJT in the circuit of Fig. P5.137 has $\beta = 100$. - (a) Find the dc collector current and the dc voltage at the collector. - (b) Replacing the transistor by its T model, draw the small-signal equivalent circuit of the amplifier. Analyze the resulting circuit to determine the voltage gain v_0/v_l . ## FIGURE P5.137 - *5.138 Refer to the voltage-gain expression (in terms of transistor β) given in Eq. (5.135) for the CE amplifier with a resistance R_e in the emitter. Let the BJT be biased at an emitter current of 0.5 mA. The source resistance $R_{\rm sig}$ is 10 k Ω . The BJT β is specified to lie in the range of 50 to 150 with a nominal value of 100. - (a) What is the ratio of maximum to minimum voltage gain obtained without R.? - (b) What value of R_e should be used to limit the ratio of maximum to minimum gain to 1.2? - (c) If the R_e found in (b) is used, by what factor is the gain reduced (compared to the case without R_e) for a BJT with a nominal β ?