777

of these situations? Now for  $v_{G2} = 0$  V, at what voltages must  $v_{G1}$  be placed to reduce  $i_{D2}$  by 10%? to increase  $i_{D2}$  by 10%? What is the differential voltage,  $v_{id} = v_{G2} - v_{G1}$ , for which the ratio of drain currents  $i_{D2}/i_{D1}$  is 1.0? 0.5? 0.9? 0.99? For the current ratio  $i_{D1}/i_{D2} = 20.0$ , what differential input is required?

## SECTION 7.2: SMALL-SIGNAL OPERATION OF THE MOS DIFFERENTIAL PAIR

7.11 An NMOS differential amplifier is operated at a bias current I of 0.5 mA and has a W/L ratio of 50,  $\mu_n C_{ar} =$ 250  $\mu$ A/V<sup>2</sup>,  $V_A = 10$  V, and  $R_D = 4$  k $\Omega$ . Find  $V_{OV}$ ,  $g_{rr}$ ,  $r_{cr}$ and  $A_d$ .

D7.12 It is required to design an NMOS differential amplifier to operate with a differential input voltage that can be as high as 0.2 V while keeping the nonlinear term under the square root in Eq. (7.23) to a maximum of 0.1. A transconductance g<sub>m</sub> of 3 mA/V is needed. Find the required values of  $V_{OV}$ , I, and W/L. Assume that the technology available has  $\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$ . What differential gain  $A_d$  results when  $R_D = 5 \text{ k}\Omega$ ? Assume  $\lambda = 0$ . What is the resulting output signal corresponding to  $v_{id}$  at its maximum

D\*7.13 Figure P7.13 shows a circuit for a differential amplifier with an active load. Here  $Q_1$  and  $Q_2$  form the differential pair while the current source transistors  $Q_4$  and  $Q_5$ form the active loads for  $Q_1$  and  $Q_2$ , respectively. The dc

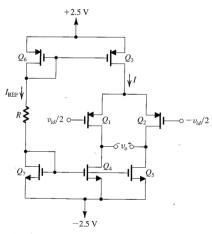



FIGURE P7.13

bias circuit that establishes an appropriate dc voltage at the drains of  $Q_1$  and  $Q_2$  is not shown. Note that the equivalent differential half-circuit is an active-loaded common-source transistor of the type studied in Section 6.5. It is required to design the circuit to meet the following specifications:

- (a) Differential gain  $A_d = 80 \text{ V/V}$ .
- (b)  $I_{REF} = I = 100 \mu A$ .
- (c) The dc voltage at the gates of  $Q_6$  and  $Q_3$  is +1.5 V.
- (d) The dc voltage at the gates of  $Q_7$ ,  $Q_4$ , and  $Q_5$  is -1.5 V.

The technology available is specified as follows:  $\mu_{\nu}C_{\alpha\nu} =$  $3\mu_p C_{ox} = 90 \ \mu \text{A/V}^2$ ;  $V_{tn} = |V_{tn}| = 0.7 \ \text{V}$ ,  $V_{An} = |V_{An}| = 20 \ \text{V}$ . Specify the required value of R and the W/L ratios for all transistors. Also specify  $I_D$  and  $|V_{GS}|$  at which each transistor is operating. For dc bias calculations you may neglect channel. length modulation.

7.14 A design error has resulted in a gross mismatch in the circuit of Fig. P7.14. Specifically, Q2 has twice the W/L ratio of  $Q_1$ . If  $v_{id}$  is a small sine-wave signal, find:

- (a)  $I_{D1}$  and  $I_{D2}$ .
- (b)  $V_{OV}$  for each of  $O_1$  and  $O_2$ .
- (c) The differential gain  $A_d$  in terms of  $R_D$ , I, and  $V_{OV}$ .

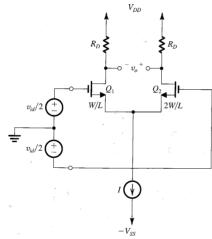



FIGURE P7.14

7.15 An NMOS differential pair is biased by a current source I = 0.2 mA having an output resistance  $R_{ss} = 100 \text{ k}\Omega$ . The amplifier has drain resistances  $R_0 = 10 \text{ k}\Omega$ , using transistors with  $k_n'W/L = 3 \text{ mA/V}^2$ , and  $r_0$  that is large.

- (a) If the output is taken single-endedly, find  $|A_d|$ ,  $|A_{cm}|$ , and
- (b) If the output is taken differentially and there is a 1% mismatch between the drain resistances, find  $|A_d|$ ,  $|A_{cm}|$ , and
- 7.16 For the differential amplifier shown in Fig. P7.2, let  $Q_1$  and  $Q_2$  have  $k'_{-}(W/L) = 3.5 \text{ mA/V}^2$ , and assume that the bias current source has an output resistance of 30 k $\Omega$ . Find  $V_{OV}$ ,  $g_m$ ,  $|A_d|$ ,  $|A_{cm}|$ , and the CMRR (in dB) obtained with the output taken differentially. The drain resistances are known to have a mismatch of 2%.
- D\*7.17 The differential amplifier in Fig. P7.17 utilizes a resistor  $R_{SS}$  to establish a 1-mA dc bias current. Note that this amplifier uses a single 5-V supply and thus needs a dc common-mode voltage  $V_{CM}$ . Transistors  $Q_1$  and  $Q_2$  have  $k_n'W/L = 2.5 \text{ mA/V}^2$ ,  $V_t = 0.7 \text{ V}$ , and  $\lambda = 0$ .
- (a) Find the required value of V<sub>CM</sub>.
- (b) Find the value of  $R_D$  that results in a differential gain  $A_d$ of 8 V/V.
- (c) Determine the dc voltage at the drains.
- (d) Determine the common-mode gain  $\Delta V_{D1}/\Delta V_{CM}$ . (Hint: You need to take  $1/g_m$  into account.)
- (e) Use the common-mode gain found in (d) to determine the change in  $V_{CM}$  that results in  $O_1$  and  $O_2$  entering the triode region.

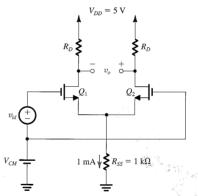



FIGURE P7.17

- \*7.18 The objective of this problem is to determine the common-mode gain and hence the CMRR of the differential pair arising from a simultaneous mismatch in  $g_m$  and in  $R_D$ .
- (a) Refer to the circuit in Fig. 7.11 and let the two drain resistors be denoted  $R_{D1}$  and  $R_{D2}$  where  $R_{D1} = R_D + (\Delta R_D/2)$  and

 $R_{D2} = R_D - (\Delta R_D/2)$ . Also let  $g_{m1} = g_m + (\Delta g_m/2)$  and  $g_{m2} =$  $g_m - (\Delta g_m/2)$ . Follow an analysis process similar to that used to derive Eq. (7.64) to show that

$$A_{cm} \cong \left(\frac{R_D}{2R_{SS}}\right)\left(\frac{\Delta g_m}{g_m} + \frac{\Delta R_D}{R_D}\right)$$

Note that this equation indicates that  $R_D$  can be deliberately varied to compensate for the initial variability in  $g_{m}$  and  $R_{D_{m}}$ that is, to minimize A .....

(b) In a MOS differential amplifier for which  $R_D = 5 \text{ k}\Omega$  and  $R_{\rm sc} = 25 \text{ k}\Omega$ , the common-mode gain is measured and found to be 0.002 V/V. Find the percentage change required in one of the two drain resistors so as to reduce  $A_{cm}$  to zero (or close to zero).

7.19 Recalling that g., of a MOSFET is given by

$$g_m = k_n' \left(\frac{W}{L}\right) (V_{GS} - V_t)$$

we observe that there are two potential sources for a mismatch between the  $g_m$  values in a differential pair: a mismatch  $\Delta(W/L)$  in the (W/L) values and a mismatch  $\Delta V$ , in the threshold voltage values. Hence show that

$$\frac{\Delta g_m}{g_m} = \frac{\Delta (W/L)}{W/L} + \frac{\Delta V_t}{V_{OV}}$$

Evaluate the worst-case fractional mismatch in  $g_m$  for a differential pair in which the (W/L) values have a tolerance of  $\pm 1\%$ and the largest mismatch in V, is specified to be 5 mV. Assume that the pair is operating at  $V_{OV} = 0.25$  V. If  $R_D = 5 \text{ k}\Omega$  and  $R_{SS} = 25 \text{ k}\Omega$ , find the worst-case value of  $A_{cm}$ . If the bias current I = 1 mA, find the corresponding worst-case CMRR.

## SECTION 7.3: THE BJT DIFFERENTIAL PAIR

- **7.20** For the differential amplifier of Fig. 7.13(a) let I =1 mA,  $V_{CC} = 5$  V,  $v_{CM} = -2$  V,  $R_C = 3$  k $\Omega$ , and  $\beta = 100$ . Assume that the BJTs have  $v_{RE} = 0.7 \text{ V}$  at  $i_C = 1 \text{ mA}$ . Find the voltage at the emitters and at the outputs.
- **7.21** For the circuit of Fig. 7.13(b) with an input of +1 V as indicated, and with I = 1 mA,  $V_{CC} = 5$  V,  $R_C = 3$  k $\Omega$ , and  $\beta =$ 100, find the voltage at the emitters and the collector voltages. Assume that the BJTs have  $v_{BF} = 0.7 \text{ V}$  at  $i_C = 1 \text{ mA}$ .
- 7.22 Repeat Exercise 7.7 (page.X) for an input of -0.3 V.
- 7.23 For the BJT differential amplifier of Fig. 7.12 find the value of the input differential signal,  $v_{id} \equiv v_{B1} - v_{B2}$ , that causes  $i_{E1} = 0.80I$ .
- D7.24 Consider the differential amplifier of Fig. 7.12 and let the BJT  $\beta$  be very large:
- (a) What is the largest input common-mode signal that can be applied while the BJTs remain comfortably in the active region with  $v_{CR} = 0$ ?



(b) If an input difference signal is applied that is large enough to steer the current entirely to one side of the pair, what is the change in voltage at each collector (from the condition for which  $v_{id} = 0$ )?

(c) If the available power supply  $V_{CC}$  is 5 V, what value of  $IR_C$  should you choose in order to allow a common-mode input signal of  $\pm 3$  V?

(d) For the value of  $IR_C$  found in (c), select values for I and  $R_C$ . Use the largest possible value for I subject to the constraint that the base current of each transistor (when I divides equally) should not exceed 2  $\mu$ A. Let  $\beta = 100$ .

**7.25** To provide insight into the possibility of nonlinear distortion resulting from large differential input signals applied to the differential amplifier of Fig. 7.12, evaluate the normalized change in the current  $i_{E1}$ ,  $\Delta i_{E1}/I = (i_{E1} - (I/2))/I$ , for differential input signals  $v_{id}$  of 5, 10, 20, 30, and 40 mV. Provide a tabulation of the ratio  $((\Delta i_{E1}/I)/v_{id})$ , which represents the proportional transconductance gain of the differential pair, versus  $v_{id}$ . Comment on the linearity of the differential pair as an amplifier.

**D7.26** Design the circuit of Fig. 7.12 to provide a differential output voltage (i.e., one taken between the two collectors) of 1 V when the differential input signal is 10 mV. A current source of 2 mA and a positive supply of +10 V are available. What is the largest possible input common-mode voltage for which operation is as required? Assume  $\alpha = 1$ .

**D\*7.27** One of the trade-offs available in the design of the basic differential amplifier circuit of Fig. 7.12 is between the value of the voltage gain and the range of commonmode input voltage. The purpose of this problem is to demonstrate this trade-off.

(a) Use Eqs. (7.72) and (7.73) to obtain  $i_{C1}$  and  $i_{C2}$  corresponding to a differential input signal of 5 mV (i.e.,  $v_{B1} - v_{B2} = 5$  mV). Assume  $\beta$  to be very high. Find the resulting voltage difference between the two collectors ( $v_{C2} - v_{C1}$ ), and divide this value by 5 mV to obtain the voltage gain in terms of ( $IR_C$ ).

(b) Find the maximum permitted value for  $v_{CM}$  (Fig. 7.13a) while the transistors remain comfortably in the active mode with  $v_{CB} = 0$ . Express this maximum in terms of  $V_{CC}$  and the gain, and hence show that for a given value of  $V_{CC}$  the higher the gain achieved, the lower the common-mode range. Use this expression to find  $v_{CMmax}$  corresponding to a gain magnitude of 100, 200, 300, and 400 V/V. For each value, also give the required value of IR, and the value of R, for I = 1 mA.

\*7.28 For the circuit in Fig. 7.12, assuming  $\alpha=1$  and  $IR_C=5$  V, use Eqs. (7.67) and (7.68) to find  $i_{c1}$  and  $i_{c2}$ , and hence determine  $v_o=v_{c2}-v_{c1}$  for input differential signals  $v_{id}=v_{b1}-v_{b2}$  of 5 mV, 10 mV, 15 mV, 20 mV, 25 mV, 30 mV, 35 mV, and 40 mV. Plot  $v_o$  versus  $v_{id}$ , and hence comment on the amplifier linearity. As another way of visualizing linearity, determine the gain  $(v_o/v_{id})$  versus  $v_{id}$ . Comment on the resulting graph.

**7.29** In a differential amplifier using a 6-mA emitter bias current source the two BJTs are not matched. Rather, one has one-and-a-half times the emitter junction area of the other. For a differential input signal of zero volts, what do the collector currents become? What difference input is needed to equalize the collector currents? Assume  $\alpha=1$ .

\*7.30 Figure P7.30 shows a logic inverter based on the differential pair. Here,  $Q_1$  and  $Q_2$  form the differential pair, whereas  $Q_3$  is an emitter follower that performs two functions: It shifts the level of the output voltage to make  $V_{OH}$  and  $V_{OL}$  centered on the reference voltage  $V_R$ , thus enabling one gate to drive another (this point will be explained in detail in Chapter 11), and it provides the inverter with a low output resistance. All transistors have  $V_{BE} = 0.7 \text{ V}$  at  $I_C = 1 \text{ mA}$  and have  $\beta = 100$ .

(a) For  $v_l$  sufficiently low that  $Q_1$  is cut off, find the value of the output voltage  $v_O$  . This is  $V_{O\!H}$ 

(b) For  $v_l$  sufficiently high that  $Q_1$  is carrying all the current I, find the output voltage  $v_Q$ . This is  $V_{QI}$ .

(c) Determine the value of  $v_I$  that results in  $Q_1$  conducting 1% of I. This can be taken as  $V_{II}$ .

(d) Determine the value of  $v_I$  that results in  $Q_1$  conducting 99% of I. This can be taken as  $V_{III}$ .

(e) Sketch and clearly label the breakpoints of the inverter voltage transfer characteristic. Calculate the values of the noise margins  $NM_H$  and  $NM_L$ . Note the judicious choice of the value of the reference voltage  $V_R$ .

(For the definitions of the parameters that are used to characterize the inverter VTC, refer to Section 1.7.)

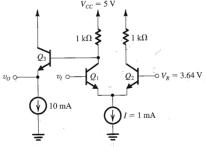



FIGURE P7.30

**7.31** A BJT differential amplifier uses a 300- $\mu$ A bias current. What is the value of  $g_m$  of each device? If  $\beta$  is 150, what is the differential input resistance?

**D7.32** Design the basic BJT differential amplifier circuit of Fig. 7.16 to provide a differential input resistance of at least  $10~\mathrm{k}\Omega$  and a differential voltage gain (with the output taken

between the two collectors) of 200 V/V. The transistor  $\beta$  is specified to be at least 100. The available power supply is 10 V.

**7.33** For a differential amplifier to which a total difference signal of 10 mV is applied, what is the equivalent signal to its corresponding CE half-circuit? If the emitter current source is  $100~\mu\text{A}$ , what is  $r_e$  of the half-circuit? For a load resistance of  $10~\text{k}\Omega$  in each collector, what is the half-circuit gain? What magnitude of signal output voltage would you expect at each collector?

**7.34** A BJT differential amplifier is biased from a 2-mA constant-current source and includes a 100- $\Omega$  resistor in each emitter. The collectors are connected to  $V_{CC}$  via 5-k $\Omega$  resistors. A differential input signal of 0.1 V is applied between the two bases.

(a) Find the signal current in the emitters  $(i_e)$  and the signal voltage  $v_{be}$  for each BJT.

(b) What is the total emitter current in each BJT?

(c) What is the signal voltage at each collector? Assume  $\alpha = 1$ .

(d) What is the voltage gain realized when the output is taken between the two collectors?

**D7.35** Design a BJT differential amplifier to amplify a differential input signal of 0.2 V and provide a differential output signal of 4 V. To ensure adequate linearity, it is required to limit the signal amplitude across each base-emitter junction to a maximum of 5 mV. Another design requirement is that the differential input resistance be at least 80 k $\Omega$ . The BJTs available are specified to have  $\beta \ge 200$ . Give the circuit configuration and specify the values of all its components.

**7.36** A particular differential amplifier operates from an emitter current source whose output resistance is 1 M $\Omega$ . What resistance is associated with each common-mode half-circuit? For collector resistors of 20 k $\Omega$ , what is the resulting common-mode gain for output taken (a) differentially, (b) single-endedly?

**7.37** Find the voltage gain and the input resistance of the amplifier shown in Fig. P7.37 assuming  $\beta = 100$ .

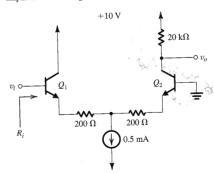
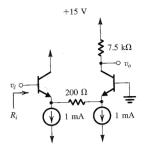
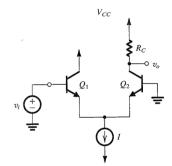



FIGURE P7.37

**7.38** Find the voltage gain and input resistance of the amplifier in Fig. P7.38 assuming that  $\beta = 100$ .





FIGURE P7.38

**7.39** Derive an expression for the small-signal voltage gain  $v_a/v_i$  of the circuit shown in Fig. P7.39 in two different ways:

(a) as a differential amplifier

(b) as a cascade of a common-collector stage  $\mathcal{Q}_1$  and a common-base stage  $\mathcal{Q}_2$ 

Assume that the BJTs are matched and have a current gain  $\alpha$ . Verify that both approaches lead to the same result.



## FIGURE P7.39

**7.40** The differential amplifier circuit of Fig. P7.40 utilizes a resistor connected to the negative power supply to establish the bias current *I*.

(a) For  $v_{B1} = v_{id}/2$  and  $v_{B2} = -v_{id}/2$ , where  $v_{id}$  is a small signal with zero average, find the magnitude of the differential gain,  $|v_x/v_{t/d}|$ .

(b) For  $v_{B1} = v_{B2} = v_{lcm}$ , find the magnitude of the common-mode gain,  $|v_o/v_{lcm}|$ .

(c) Calculate the CMRR.