4.42 In the circuits shown in Fig. P4.42, transistors are characterized by $|V_t| = 2 \text{ V}$, $k'W/L = 1 \text{ mA/V}^2$, and $\lambda = 0$. (a) Find the labelled voltages V_1 through V_2 . (b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix G. Find the new values of V_1 to V_7 . ## FIGURE P4.42 4.43 For each of the circuits in Fig. P4.43, find the labeled node voltages. For all transistors, $k'_n(W/L) = 0.4 \text{ mA/V}^2$, $V_r =$ 1 V, and $\lambda = 0$. (g) FIGURE P4.43 4.44 For each of the circuits shown in Fig. P4.44, find the labeled node voltages. The NMOS transistors have $V_r = 1 \text{ V}$ and $k'_n W/L = 2 \text{ mA/V}^2$. Assume $\lambda = 0$. ## FIGURE P4.44 *4.45 For the PMOS transistor in the circuit shown in Fig. P4.45, $k'_n = 8 \mu A/V^2$, W/L = 25, and $|V_{to}| = 1 \text{ V}$. For $I = 100 \ \mu\text{A}$, find the voltages V_{SD} and V_{SG} for R = 0, 10 k Ω , 30 k Ω , and 100 k Ω . For what value of R is $V_{SD} = V_{SG}$? $V_{SD} =$ $V_{SG}/2$? $V_{SD} = V_{SG}/10$? ## FIGURE P4.45 **4.46** For the circuits in Fig. P4.46, $\mu_n C_{ox} = 2.5 \ \mu_n C_{ox} =$ $20 \ \mu \text{A/V}^2$, $|V_i| = 1 \ \text{V}$, $\lambda = 0$, $\gamma = 0$, $L = 10 \ \mu \text{m}$, and W = 0 $30 \, \mu \mathrm{m}$, unless otherwise specified. Find the labeled currents and voltages. ## FIGURE P4.46 ***4.47** For the devices in the circuits of Fig. P4.47, $|V_t|$ = 1 V, $\lambda = 0$, $\gamma = 0$, $\mu_n C_{ox} = 50 \,\mu\text{A/V}^2$, $L = 1 \,\mu\text{m}$, and $W = 10 \,\mu\text{m}$. Find V_2 and I_2 . How do these values change if Q_3 and Q_4 are made to have $W = 100 \mu \text{m}$? FIGURE P4.47