EE 321 Analog Electronics, Fall 2011
 Exam 4 December 12, 2011
 Solution

Rules: This is a closed-book exam. You may use only your brain, a calculator and pen/paper. Each numbered question counts equally toward your grade.

Note: The questions are designed to test your conceptual understanding, not your ability to do many pages of math. If you find yourself doing long calculations there is a high probability that you are doing something wrong.

Operational amplifier

1. Draw a inverting amplifier with input resistance $1 \mathrm{k} \Omega$ and gain of $\mathbf{- 1 0 0}$. 100 K

2. Compute the output voltage due to a input offset voltage of 1 mV .

The offset voltage is amplified by the non-inverting gain, so

$$
V_{\text {out }}=\left(1+\frac{R_{2}}{R-1}\right) V_{O S}=101 \times 1 \mathrm{mV}=0.101 \mathrm{~V}
$$

Diode

3. Carefully plot the labeled voltages V_{A} and V_{B} as a function of $V_{\text {in }}$ between -5 and +5 V . The saturation voltage levels of the op-amp are $\pm 13 \mathrm{~V}$. For the diode assume the fixed voltage drop model with $V_{D}=0.7 \mathrm{~V}$.

4. Find all voltages and currents in these two circuits (assume $\beta=100$)

(a) Assume active mode operation

$$
V_{C C}=i_{B} R_{B}+V_{B E}
$$

$$
\begin{gathered}
i_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{10-0.7}{200}=46.5 \mu \mathrm{~A} \\
i_{C}=\beta i_{B}=4.65 \mathrm{~mA} \\
v_{C}=V_{C C}-i_{C} R_{C}=10-4.65 \times 1=5.35 \mathrm{~V} \\
v_{B}=V_{B E}=0.7 \mathrm{~V}
\end{gathered}
$$

active mode confirmed

$$
\begin{gathered}
v_{E}=0 \\
i_{E}=(\beta+1) i_{B}=4.70 \mathrm{~mA}
\end{gathered}
$$

(b) This BJT is obviously in active mode

$$
\begin{gathered}
V_{C C}=i_{B} R_{B}+V_{B E}+i_{E} R_{E}=i_{B}\left[R_{B}+(\beta+1) R_{E}\right]+V_{B E} \\
i_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{10-0.7}{200+101 \times 1}=30.9 \mu \mathrm{~A} \\
v_{B}=V_{C C}-i_{B} R_{B}=10-30.9 \times 200=3.82 \mathrm{~V} \\
i_{C}=\beta i_{B}=100 \times 30.9 \times 10^{-6}=3.09 \mathrm{~mA} \\
v_{C}=V_{C C}=10 \mathrm{~V} \\
i_{E}=(\beta+1) i_{B}=101 \times 30.9 \times 10^{-6}=3.12 \mathrm{~mA} \\
v_{E}=i_{E} R_{E}=3.12 \times 1=3.12 \mathrm{~V}
\end{gathered}
$$

MOSFET

5. Compute the voltages and currents for this circuit. Use $V_{t}=2 \mathrm{~V}$ and $k_{n}^{\prime} \frac{W}{L}=$ $1 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}}$
First we see that $V_{G}=7 \mathrm{~V}$. We also know that $I_{G}=0$. The MOSFET is in saturation mode so that

$$
\begin{gathered}
i_{D}=\frac{k_{n}^{\prime}}{2} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2} \\
v_{G S}=V_{G}-i_{D} R_{S} \\
i_{D}=\frac{k_{n}^{\prime}}{2} \frac{W}{L}\left(V_{G}-i_{D} R_{S}-V_{t}\right)^{2} \\
i_{D}=\frac{k_{n}^{\prime}}{2} \frac{W}{L}\left[i_{D}^{2} R_{S}^{2}+\left(V_{G}-V_{t}\right)^{2}-2 i_{D} R_{S}\left(V_{G}-V_{t}\right)\right] \\
\frac{k_{n}^{\prime}}{2} \frac{W}{L} R_{S}^{2} i_{D}^{2}-2 \frac{k_{n}^{\prime}}{2} \frac{W}{L} i_{D} R_{S}\left(V_{G}-V_{t}\right)-i_{D}+\left(V_{G}-V_{t}\right)^{2}=0 \\
i_{D}^{2}-13 i_{D}+36=0 \\
i_{D}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}=\frac{13 \pm 5}{2}=4 \mathrm{~mA} \text { or } 9 \mathrm{~mA}
\end{gathered}
$$

$i_{D}=4 \mathrm{~mA}$ is the only answer that is consistent with saturation mode.

