EE 322 Advanced Analog Electronics, Spring 2010 Homework #6 solution

SS 12.9. A third-order low-pass filter has transmission zeros at $\omega = 2 \text{ rad/s}$ and $\omega = \infty$. Its natural modes are at s = -1 and $s = -0.5 \pm j0.8$. The DC gain is unity. Find T(s).

We construct the transfer function by multiplying terms s - z in the numerator (except for zeros at infinity), and terms s - p in the denominator. Thus we get

$$T(s) = \frac{s-2}{(s+1)(s+0.5-j0.8)(s+0.5+j0.8)}$$

SS 12.17. Contrast the attenuation provided by a fifth-order Chebyshev filter at $\omega_s = 2\omega_p$ to that provided by a Butterworth filter of equal order. For both, $A_{\max} = 1 \text{ dB}$. Sketch |T| for both filters on the same axes. For the Butterworth filter we have

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}} \qquad \epsilon^2 = 10^{\frac{A_{\max}}{10}} - 1$$

Now for $A_{\text{max}} = 1 \text{ dB}$ we get $\epsilon^2 = 0.2590$, and for $\omega = 2\omega_p$ we get

$$|T(j2\omega)| = \frac{1}{\sqrt{1 + 0.2590 \times 2^{10}}} = 0.061$$

For the Chebyshev filter we have (for $\omega > \omega_p$)

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 \cosh^2\left[N \cosh^{-1}\left(\frac{\omega}{\omega_p}\right)\right]}}$$

with the same expression for ϵ as before. Inserting we get

$$|T(j2\omega_p)| = \frac{1}{\sqrt{1 + 0.2590 \cosh^2\left[5\cosh^{-1}2\right]}} = 0.103$$