EE 322 Advanced Analog Electronics, Spring 2010 Homework #11 solution

SS 7.1. For a NMOS differential pair with a common-mode voltage v_{CM} applied, as shon in Fig. 7.2, let $V_{DD} = V_{SS} = 2.5 \text{ V}, k'_n W/L = 3 \text{ mA}/\text{V}^2, V_{tn} = 0.7 \text{ V}, I = 0.2 \text{ mA}, R_D = 5 \text{ k}\Omega$, and neglect channel-length modulation.

- (a) Find V_{OV} and V_{GS} for each transistor.
- (b) For $v_{CM} = 0$, find v_S , i_{D1} , i_{D2} , v_{D1} , and v_{D2} .
- (c) Repeat (b) for $v_{CM} = +1$ V.
- (d) Repeat (b) for $v_{CM} = -1$ V.
- (e) What is the highest value of v_{CM} for which Q_1 and Q_2 remain in saturation?
- (f) If the current source I requires a minimum voltage of 0.3 V to operate properly, what is the lowest value allowed for v_S and hence for v_{CM} ?.

(a) Assuming saturation mode operation we get

$$\frac{I}{2} = k'_n \frac{W}{L} V_{OV}^2$$
$$V_{OV} = \sqrt{\frac{I}{2}/k'_n \frac{W}{L}} = \sqrt{\frac{\frac{0.2}{2}}{3}} = 0.182 \,\mathrm{V}$$

 $V_{GS} = V_{OV} + V_{tn} = 0.182 + 0.7 = 0.882 \,\mathrm{V}$

- (b) In this case we have $v_G = 0$ V, and thus $v_S = v_G V_{GS} = -0.882$ V. Also, $i_{D1} = i_{D2} = \frac{I}{2} = \frac{0.2}{2} = 0.1$ mA. And, $v_{D1} = v_{D2} = V_{DD} R_D i_{D1} = 2.5 5 \times 10^3 \times 0.1 \times 10^{-3} = 2$ V.
- (c) In this case we have $v_G = 1 \text{ V}$, and $v_S = V_G V_{GS} = 1 0.882 = 0.118 \text{ V}$. $i_{D1} = i_{D2} = \frac{I}{2} = 0.1 \text{ mA}$. $v_{D1} = v_{D2} = 2 \text{ V}$. Since $v_D > v_G V_t$, still in saturation mode.
- (d) In this case we have $v_G = -1$ V, and $v_S = V_G V_{GS} = -1 0.882 = -1.882$ V. Again, $i_{D1} = i_{D2} = \frac{I}{2} = 0.1$ mA. $v_{D1} = v_{D2} = 2$ V.
- (e) The largest value for $v_G = v_{CM}$ is the one which make $v_G V_t = v_D$. Given $v_D = 2$ V, we have $v_{G,\text{max}} = v_D + V_t = 2 + 0.7 = 2.7$ V.
- (f) In this case the minimum gate voltage is defined by $v_S = -V_{SS} + 0.3 \text{ V}$, or $v_{G,\min} = -V_{SS} + 0.3 \text{ V} + V_{GS} = -2.5 + 0.3 + 0.882 = -1.318 \text{ V}$.

SS 7.3. For the differential amplifier specified in Problem 7.1, let $v_{G2} = 0$ and $v_{G1} = v_{id}$. Find the value of v_{id} that corresponds to each of the following situations:

- (a) $i_{D1} = i_{D2} = 0.1 \text{ mA}.$
- (b) $i_{D1} = 0.15 \text{ mA}$ and $i_{D2} = 0.05 \text{ mA}$.
- (c) $i_{D1} = 0.2 \text{ mA}$ and $i_{D2} = 0$ (Q_2 just cuts off).
- (d) $i_{D1} = 0.05 \text{ mA}$ and $i_{D2} = 0.15 \text{ mA}$.
- (e) $i_{D1} = 0 \text{ mA}$ (Q_1 just cuts off) and $i_{D2} = 0.2 \text{ mA}$.

For each case find v_S , v_{D1} , v_{D2} , and $v_{D2} - v_{D1}$.

- (a) This is simply $v_{id} = 0$ V, and we have the same values as in 7.1b, $v_S = -0.882$ V, $v_{D1} = v_{D2} = 2$ V, and $v_{D1} v_{D2} = 0$ V.
- (b) In this case we have

$$v_{D1} = V_{DD} - i_{D1}R_D = 2.5 - 5 \times 0.15 = 1.75 \text{ V}$$
 $v_{D2} = V_{DD} - i_{D2}R_D = 2.5 - 5 \times 0.05 = 2.25 \text{ V}$

$$v_{D1} - v_{D2} = 1.75 - 2.25 = -0.5 \,\mathrm{V}$$

Since $v_{D2} - V_t = 2.25 - 0.7 = 1.55 \text{ V} > v_{G2} = 0 \text{ V}$, Q_2 is indeed in saturation and we can use

$$v_{OV2} = \sqrt{i_{D2}/k'_n \frac{W}{L}} = \sqrt{0.05/3} = 0.129 \,\mathrm{V}$$

$$v_S = V_{G2} - V_{OV2} - V_t = 0 - 0.129 - 0.7 = -0.829 \,\mathrm{V}$$

Assuming saturation we get

$$v_{OV1} = \sqrt{i_{D1}/k'_n \frac{W}{L}} = \sqrt{0.15/3} = 0.224 \,\mathrm{V}$$

and

$$v_{id} = v_{G1} = v_S + V_t + v_{OV1} = -0.829 + 0.7 + 0.224 = 0.095$$
 V

Verify saturation for Q_1 by noting that $v_{D1} = 1.75 > v_{G1} - V_t = 0.095 - 0.7 = -0.605$ V.

- (c) In this case we have $v_{D1} = V_{DD} i_{D1}R_D = 2.5 5 \times 0.2 = 1.5 \text{ V}$, and $v_{D2} = V_{DD} = 2.5 \text{ V}$. $v_{D1} - v_{D2} = 1.5 - 2.5 = -1, \text{ V}$. Also, $v_{GS2} = V_t$, so $v_S = -V_t = -0.7 \text{ V}$. $v_{OV1} = \sqrt{i_{D1}/k'_n \frac{W}{L}} = \sqrt{0.2/3} = 0.258 \text{ V}$. So $v_{id} = V_{G1} = v_S + V_t + v_{OV1} = -0.7 + 0.7 + 0.258 = 0.258 \text{ V}$. Saturation mode verified for Q_1 .
- (d) In this case we have the reverse drain voltage of (b), $v_{D1} = 2.25 \text{ V}$, $v_{D2} = 1.75 \text{ V}$, and $v_{D1} v_{D2} = 0.5 \text{ V}$. Next, $v_{OV2} = \sqrt{i_{D2}/k'_n \frac{W}{L}} = \sqrt{0.15/3} = 0.224 \text{ V}$, and $v_S = v_{G2} v_{OV2} V_t = 0 0.224 0.7 = -0.924 \text{ V}$. Then $v_{OV1} = \sqrt{i_{D1}/k'_n \frac{W}{L}} = \sqrt{0.05/3} = 0.129$, so that $v_{id} = v_{G1} = v_S + V_t + v_{OV1} = -0.924 + 0.7 + 0.129 = -0.095 \text{ V}$. And, clearly Q_1 is still in saturation mode.
- (e) In this case we have the reverse drain voltages of (c), $v_{D1} = 2.5$ V, and $v_{D2} = 1.5$ V, and $v_{D1} - v_{D2} = 1$ V. Next $v_{OV2} = \sqrt{i_{D2}/k'_n \frac{W}{L}} = \sqrt{0.2/3} = 0.258$ V, and then $v_S = v_{G2} - V_t - v_{OV2} = 0 - 0.7 - 0.258 = -0.958$ V. And $v_{OV1} = 0$ V, so $v_{id} = v_{G1} = v_s + V_t = -0.958 + 0.7 = -0.258$ V.