EE 322 Advanced Analog Electronics

Course title:	Instructor:	
Advanced Analog Electronics	Dr. Anders M. Jorgensen	
	Workman 227	
	Phone: 505-835-5450	
	e-mail: anders@nmt.edu	
Class hours:	Classroom location:	
Monday, Wednesday, Friday 10:00-10:50	Workman 113	
Laboratory hours:	Laboratory location:	
Monday 14:00-17:00	Workman 189	

Office hours: TBD

u

Textbooks:

- 1. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Fifth edition, Oxford University Press. (This is the textbook for EE 321)
- 2. Paul Horowitz and Winfield Hill, The Art of Electronics, Second edition, Cambridge University Press. (This book is available at the NMT bookstore)
- 3. Ron Mancini, ed., Op Amps For Everyone, September 2001 edition. (This book is available as a pdf from the course website)

Learning objectives:

- 1. Apply basic concepts from previous courses to practical analog circuits and techniques.
- 2. Learn principles and good experimental technique through laboratory exercises.
- 3. Exposure to a selected variety of practical circuits.
- 4. Be able to use a new circuit or IC after reading the section in 'Horowitz and Hill' and the spec sheet.

Prerequisites:

EE 231 and EE 231L, EE 321 and 321L, EE 341. EE 322 and EE 322L are integrated and must be taken together.

Topics covered:

1. Linear voltage regulators	4. Noise in circuits
2. Switching voltage regulators	5. Oscillators and comparators
3. Interference and grounding	6. Timers

4. Tests. Three tests in class during the semester.

2. Homework. Assigned approximately weekly.

3. Laboratory exercise. Scheduled most weeks.

5. Final exam. During finals week.

Grading policy:

EE 322

- 1. Homework 30%
- 2. Three tests 50%
- 3. Final exam 20%

Approximate Lecture Schedule:

Week of	Lecture	Test	Laboratory Exercise
Jan 20	Voltage regulators		
Jan 25	Switching regulators		Pspice simulation
Feb 1	Switching regulators, grounding		Linear regulator
Feb 8	Oscillator		Switching regulator
Feb 15	Comparators	1	Sine oscillator
Feb 22	Timers, Oscillators		Comparators
Mar 1	Active filters		555 timer
Mar 8	RLC, VCVS		Matlab filters
${\rm Mar}\ 15$	Spring Break		
Mar 22	Phase-locked loops	2	Active filters
Mar 29	Phase-locked loops, Noise		Phase-locked loops
Apr 5	Voltage/current feedback op-amps		Noise
Apr 12	Differential pairs		Current Feedback
Apr 19	Differential amplifier		Discrete Op-amp - 1
Apr 26	Differential/multi-stage amps	3	Discrete Op-amp - 2
May 3	Review		
May 10		Final Exam	

9. Feedback op-amps and stability

Please see specific instructions and grading information on laboratory exercises website.

10. Differential amplifiers

1. Reading. You will be required to keep up with the course by reading the assigned

EE 322L

- 8. Phase-locked loops

7. Active filters

Course work:

sections in the books.