
EE 322 Advanced Analog Electronics, Spring 2012
Homework #12 solution

SS 12.33. Design the LCR resonator of Fig. 12.17(a) to obtain natural modes
with ω0 = 104 rad/s and Q = 2. Use R = 10 kΩ.

The expressions for ω0 and Q in terms of circuit parameters are

ω0 =
1√
LC

Q = ωCR

First find

C =
Q

ω0R
=

2

104 × 10 × 103
= 20 nF

Next,

L =
1

ω2
0C

=
1

(104)2 × 20 × 10−9
= 0.5 H

SS 12.34. For the LCR resonator of Fig. 12.17(a) find the change in ω0 that
results from: (a) increasing L by 1%, (b) increasing C by 1%, (c) increasing R by
1%.
For the LCR resonator the resonance frequency is

ω0 =
1√
LC

(a) If we replace L with αL, then

ω0,L =
1√

αLC
=

1√
α

1√
LC

= ω0

1√
α

ω0,L

ω0

=
1√
α

=
1√
1.01

= 0.995

Thus if we increase the value of L by 1% we decrease the value of the resonance frequency
by 0.5%.
(b) It is obvious that we obtain the same result when we increase the value of the capacitance
by 1%. We get a reduction of the resonance frequency by 0.5%.
(c) The resistance does not enter into the equation for the resonance frequency. Thus, chang-
ing the value of the resistance does not change the resonance frequency - but it does change
the value of Q.
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SS 12.43. Design the circuit of Figure 12.22(e) to realize an LPN function with
f0 = 4kHz, fn = 5kHz, Q = 10, and unity DC gain. Select C4 = 10nF.
The circuit looks like this

For this circuit,

fn =
ωn

2π
=

1

2π

√

R2

C4C61R1R3R5

f0 =
ω0

2π
=

1

2π

√

R2

C4 (C61 + C62) R1R3R5

Q = R6

√

C61 + C62

C4

R2

R1R3R5

First, assume that R1R3R5

R2
= (1 kΩ)2. Then we get

C61 =
1

(2πfn)2 C4

R2

R1R3R5

=
1

(2π × 5 × 103)2 × 10 × 10−9

1

(1 × 103)2
= 101 nF

This is a reasonable value, so let us proceed. Next we use the relationship for f0 to find C62.

C62 =
1

(2πf0)
2 C4

R2

R1R3R5

− C61

=
1

(2π × 4 × 103)2 × 10 × 10−9

1

(1 × 103)2
− 101 × 10−9 = 57.3 nF

This is also a reasonable value, so we continue. The only thing we still need to determine is
R6, which we can find from the expression for Q,
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R6 =Q

√

C4

C61 + C62

R1R3R5

R2

=10

√

10 × 10−9

(101 + 57.3) × 10−9
(1 × 103)2 = 2.51 kΩ

This is also a reasonable value, so we are almost done. We just want to select R1, R3, R5,
and R2 such that R1R3R5

R2

= (1 kΩ)2. A simple choice could be R1 = R2 = R3 = R5 = 1 kΩ.
Now we are done.
SS 12.44. Design the all-pass filter of Figure 12.22(g) to provide a phase shift of
180◦ at f = 1kHz and to have Q = 1. Use 1nF capacitors.
The circuit looks like this

For this circuit,

T (s) =
s2 − s 1

C6R6

r2

r1

+ R2

C4C6R1R3R5

s2 + s 1

C6R6

+ R2

C4C6R1R3R5

We choose r2

r1

= 1, and then note that the numerator and denominator are complex conju-
gates. If the numerator has a phase shift of −90◦, then the denominator will have a phase
shift +90◦, and the whole transfer function will have a phase shift of −180◦. We thus want
the real component of the numerator to be zero,

s2 +
R2

C4C6R1R3R5

= 0

or

−ω2 +
R2

C4C6R1R3R5

= 0

or
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ω =

√

R2

C4C6R1R3R5

Where ω = 2π × 1 kHz. We also want Qz = Q = 1,

1 = R6

√

C6

C4

R2

R1R3R5

We are also told to make all the capacitances equal to C = 1 nF, so

ω2C2 =
R2

R1R3R5

1 =
R2

6R2

R1R3R5

Let’s make R1 = R3 = R5 = R. Then

R =
1

ωC
=

1

2π × 1 × 103 × 1 × 10−9
= 159 kΩ

In that case,

1 =
R6

R2

So that R6 = R = 159 kΩ.
SS 12.48. It is required to design a third-order low-pass filter whose |T | is equirip-
ple in both the passband and the stopband (in the manner showin in Fig. 12.3,
except that the response shown is for N = 5). The filter passband extends from
ω = 0 to ω = 1 rad/s and the stopband edge is at ω = 1.2 rad/s. The following
transfer function was obtained using filter design tables:

T (s) =
0.4508(s2 + 1.6996)

(s + 0.7294)(s2 + s0.2786 + 1.0504)

The actual filter is to have ωp = 104 rad/s.

(a) Obtain the transfer function of the actual filter by replacing s by s/104.

(b) Realize this filter as the cascade connection of a first-order LP op-amp RC
circuit of the type shown in Fig. 12.13(a) and a second-order LPN circuit of
the type shown in Fig. 12.22(e). Each section is to have a dc gain of unity.
Select appropriate component values. (Note: A filter with an equiripple
response in both the passband and the stopband is known as an elliptic
filter).

(a) Replacing s by s/104 we get

T (s) =
0.4508

(

s2

108 + 1.6996
)

(

s
104 + 0.7294

) (

s2

108 + s0.2786
104 + 1.0504

)

=
4.508 × 103 (s2 + 1.6996 × 108)

(s + 7.294 × 103) (s2 + s2.786 × 103 + 1.0504 × 108)
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(b) Here are the two filters we are to cascade. The first-order LP filter

and the second-order LPN filter

The DC gain of the third-order filter is 0.9778, but I will design each filter for unity
DC gain as directed.

For the first-order filter we need

CR2 =
1

ω0

ω0 = 7.294 × 103 s−1

Choose C = 10 nF we get

R2 =
1

ω0C
=

1

7.294 × 103 × 10 × 10−9
= 13.7 kΩ

For unity DC gain amplitude we need R1 = R2 = 13.7 kΩ

Here are the properties of the 2nd-order LPN filter:
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Comparing this to the transfer function let’s begin by selecting R6 = 10 kΩ, and using
the first-order term in the denominator. Then

C61 + C62 =
1

2.786 × 103 × R6

=
1

2.786 × 103 × 10 × 103
= 35.9 nF

which is a reasonable value, so we proceed. Next, if we look at the constant term in
the denominator and choose R1 = R2 = R3 = R5 = 10 kΩ, we get

C4 =
R2

1.0504 × 108 × (C61 + C62)R1R3R5

=
104

1.0504 × 108 × 35.9 × 10−9 × (104)3

=2.65 nF

This is also an acceptable value, so we proceed. Next, we use the constant term in the
parenthesis in numerator to determine C61. We get

C61 =
R2

1.6996 × 108C4R1R3R5

=
104

1.6996 × 108 × 2.65 × 10−9 × (104)3

=22.2 nF

This is also a reasonable value, and fortunately less then C61 + C62, so we can now
determine C62 = C61 + C62 − C61 = 35.9 − 22.2 = 13.7 nF

SS 12.49. Design the KHN circuit of Fig. 12.24(a) to realize a bandpass filter
with a center frequency of 1 kHz and a 3 − dB bandwidth of 50 Hz. Use 10 nF
capacitors. Give the complete circuit and specify all component values. What
value of center-frequency gain is obtained?
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The center frequency is ω = 1

RC
. Given that C = 10 nF, we get R = 1

ωC
= 1

2π×103
×10×10−9 =

15.9 kΩ. We also know that Rf = R1, so let’s choose Rf = R1 = 100 kΩ. Lastly we need
to choose R2 and R3 which sets the bandwidth. First we find Q, which is the inverse of the
fractional bandwidth,

Q =
ω0

∆ω
=

103

50
= 20

Next, choose R2 = 10 kΩ, and we have
and we have

R3 = R2 (2Q − 1) = 39 R2 = 390 kΩ

The K gain parameter is then

K = 2 − 1

Q
= 2 − 1

20
= 1.95

Finally, the gain function is

Tbp(s) = − Kω0s

s2 + ω0

Q
s + ω2

0

For s = jω0 we get

Tbp(jω0) = − jKω2
0

−ω2
0 + j

ω2

0

Q
+ ω2

0

= −KQ = −1.95 × 20 = −39

SS 12.50. (a) Using the KHN biquad with the output summing amplifier of
Fig. 12.24(b) show tthat an all-pass function is realized by selecting RL = RH =
RB/Q. Also show that the flat gain obtained is KRF/RH. (b) Design the all-pass
circuit to obtain ω0 = 104 rad/s, Q = 2, and flat gain = 10. Select appropriate
component values.

(a) Here is Figure 12.24.
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The output is

Vo = − RF

[

Vhp

RH

+
Vbp

RB

+
Vlp

RL

]

= − RF

[

Vhp

RH

− ω0

s

Vhp

RB

+
ω2

0

s2

Vhp

RL

]

= − RF

[

1

RH

− ω0

s

1

RB

+
ω2

0

s2

1

RL

]

Vhp

= − RF

[

1

RH

− ω0

s

1

RB

+
ω2

0

s2

1

RL

]

Ks2

s2 + sω0

Q
+ ω2

0

Now inserting the values given in the problem statement.

VO = − RF

[

1

RH

− ω0

s

1

RHQ
+

ω2
0

s2

1

RH

]

Ks2

s2 + sω0

Q
+ ω2

0

= − KRF

RH

s2 − ω0s
Q

+ ω2
0

s2 + sω0

Q
+ ω2

0

Notice that the real and imaginary components are of the same size in the numerator
and denominator of the second fraction. That means that the amplitude of that fraction
is unity. Also, the overall gain is

|T | = −KRF

RH
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(b) First pick

CR =
1

ω0

= 10−4

Let’s select C = 1 nF, and then

R =
10−4

C
=

10−4

10−9
= 105 = 100 kΩ

Also, since Rf/R1 = 1, I select

Rf = R1 = 100 kΩ

Next, R3/R2 = 2Q − 1 = 4 − 1 = 3, so I select

R2 = 50 kΩ

and

R3 = 150 kΩ

Next the gain of the filter is

K = 2 − 1

Q
= 2 − 1

2
=

3

2

In order to get gain of −10, we need then to have −K RF

RH

= −10, or RF

RH

= 10
3

2

= 20

3
. So

we select

RH = 30 kΩ

and thus

RF = 200 kΩ

Finally, RL = RH = 30 kΩ, and

RB = RHQ = 2RH = 60 kΩ
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