EE 333 Electricity and Magnetism

Course title:

Electricity and Magnetism

Class hours:

Monday, Wednesday, Friday 13:00-13:50

Instructor:

Dr. Anders M. Jorgensen

Workman 227

Phone: 505-835-5450 e-mail: anders@nmt.edu

Classroom location:

Workman 113

Office hours:

TBD

Textbook:

• Carl T. A. Johnk, Engineering Electromagnetic Fields and Wave, Second edition, Wiley.

Learning objectives:

- 1. Expand your basic knowledge of magnetic and electric fields.
- 2. Gain a physical intuitive understanding of electromagnetic theory.
- 3. Understand Maxwell's equations.
- 4. Learn how differential vector mathematics is used to solve electromagnetic problems.
- 5. Learn to solve static and time-dependent electromagnetic problems in vacuum and in materials.

Prerequisites:

MATH 332 (Vector Analysis).

Physics 122 or 132 (General physics II).

Topics covered:

This course will build on the basic electric and magnetic concepts developed in the physics prerequisites. We will develop Maxwell's equations and use them to solve a variety of problems, including

- 1. The electric field produced by various charge distributions.
- 2. The magnetic fields produced by electric currents and time varying electric fields.
- 3. Forces on charges and current carrying structures due to electric and magnetic fields.
- 4. Electromagnetic wave propagation in free space and material media.
- 5. Wave propagation along two-conductor transmission lines.
- 6. Energy storage in electric fields.
- 7. Forces and torques in electrostatic systems.

Course work:

- 1. Reading. You will be required to keep up with the course by reading the assigned sections in the books and writing reading summaries.
- 2. Active participation in class. Show up and respond to questions.
- 3. Homework. Assigned approximately weekly.
- 4. Exams. There will be a total of five exams during the semester.

Grading policy:

- 1. Active participation in class 10%
- 2. Reading summaries 10%
- 3. Homework 20%
- 4. Five exams 60%

Approximate Lecture Schedule:

Week of	Lecture	Exam
Aug 27	Vector Analysis	
Sep 1	Vector analysis	
Sep 8	Gauss', Ampere's, Faraday's laws	
Sep 15	Maxwell's equations integral form	1
Sep 22	Vector differential relations	
Sep 29	Maxwell's equations in differential form	
Oct 6	Plane waves in a vacuum	
Oct 13	Effects of materials	2
Oct 20	Boundary conditions on EM quantities	
Oct 27	More on material properties	
Nov 3	Plane waves in materials	3
Nov 10	Two-conductor transmission lines	
Nov 17	Circuit model and wave propagation on transmission lines	
Nov 26	Smith chart	4
Dec 1	Electrostatics	
Dec 8	Review	5