
EE 333 Electricity and Magnetism, Fall 2009
Homework #2 solution

1.26. Consider the contour c shown in Figure P1.26 and the vector field

~F = 2ρ
(

z2 + 1
)

cos φρ̂ − ρ
(

z2 + 1
)

sin φφ̂ + 2ρ2z cos φẑ

(a) Evaluate
∫

c

~F · d~l.

(b) Evaluate
∫

c1

~F · d~l, where c1 is a straight line joining (ρ = ρ0, φ = 0, z = 0)
to (ρ = 5, φ = 0, z = 0).

(c) Are the results of (a) and (b) consistent with the field ~F being conservative?
(A field is conservative when its line integral along any closed contour is zero.)
(a) The line integral has five terms.

In the first term d~l = ρφ̂dφ and the integration range goes from φ = 0 to φ = π
3
.

term1 =

∫ π

3

0

−25 sin φ dφ

= [25 cosφ]
π

3

0
= 25(0.5 − 1) = −

25

2

It makes sense that it is negative because the φ̂-component of the field points in the opposite
direction to the path.
In the second term d~l = ẑdz and the integration range goes from z = 0 to z = 5.

term2 =

∫

5

0

25 z dz

=

[

25

2
z2

]5

0

=
252

2
=

625

2

It makes sense that it is positive because the ẑ-component of the vector field points in the
direction of the path.
In the third term we have to be a little careful. The vector field ρ̂ component points in the
postiive ρ̂ direction. We can for example choose d~l = −ρ̂dρ and the integration range from
ρ = ρ0 to ρ = 5.

term3 =

∫

5

ρ0

−26ρ dρ

=
[

−13ρ2
]5

ρ0

= − 325 − (−13ρ2

0
) = 13ρ2

0
− 325

Since ρ0 < 5, this is negative as we expect it to be.

1



In the fourth term we once again have to be careful to get the sign right. The vector field
points in the negative φ̂ direction, so we expect a positive sign for the integral. We could for
example choose d~l = −φ̂ρdφ and the integration range from φ = 0 to φ = π

3
.

term4 =

∫ π

3

0

26ρ2

0
sin φ dφ

=
[

−26ρ2

0
cos φ

]
π

3

0

= − 26ρ2

0
(0.5 − 1)

=13ρ2

0

which is positive just as we expect.
In the fifth term d~l = −ẑdz and the integration range goes from z = 0 to z = 5 in order to
get the sign right. Since the vector field has a component along the positive ẑ direction, we
expect the result to be negative.

term5 =

∫

5

0

−2ρ2

0
z dz

=
[

−ρ2

0
z2

]5

0

= − 25ρ2

0

And it is negative as we expect.
The line integral along the entire path is then

total = −

25

2
+

625

2
+ 13ρ2

0
− 325 + 13ρ2

0
− 25ρ2

0

= − 25 + ρ2

0

(b) The path integral along the connecting path is then computed by setting d~l = ρ̂dρ, and
the integration range from ρ = ρ0 to ρ = 5.

short =

∫

5

ρ0

2ρ dρ

=
[

ρ2
]5

ρ0

= 25 − ρ2

0

(c) The sum of the path “total” and the path “short” is a closed loop integral, and equal to

zero, so the these line integrals are consistent with the vector field ~F being conservative.
1.31. Determine the net flux of the vector field ~F (r, θ, phi) = r sin θr̂ + θ̂ + φ̂

emanating from a closed surface defined by r = 1, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ 2π. hint:

The closed surface consits of the hemisphere s1 and the base plane s2 shown in
Figure P1.31.
The surface element on the sphere is r2 sin θ dθ dφ ρ̂, so only the ρ̂-component will contribut
to the surface integral over the sphere. We write, setting r = 1,
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sphere term =

∫

2π

φ=0

∫ π

2

θ=0

sin2 θ dθ dφ

=2π

∫ π

2

0

sin2 θ dθ

=2π

[

θ

2
−

1

4
sin 2θ

]
π

2

0

=2π
π

4
=

π2

2

For the case of the plane term the surface element is −ẑdxdy in cartesian coordinates, and
in spherical coordinates it is θ̂ρ dφ dρ. Thus, only the θ̂ component contributes, and it is
constant over the θ = π

2
surface. Thus we can compute the integral simply as the area times

the magnitude of the vector, which is 1, so

plane term = πr2 = π

The total flux of the field ~F out of the surface given is thus

∫

S

~F · d~s =
π2

2
+ π

1.34. Consider two concentric cylindrical surfaces shown in Figure P1.34, one
having a radius a and a charge density ρs, and the other having a radius b and
a charge density −ρs. Find the electric field ~E in the following regions:
(a) ρ < a.
(b) a < ρ < b.
(c) ρ > b.
I am going to use Gauss’ law for electric fields for this problem,

∫

S

~E · d~s =
1

ǫ0

∫

V

ρ dV

and integrating over cylindrical surfaces. Due to symmetry arguments the electric field must
point in the ρ̂ direction and have hte same are all over the surface. Thus we can compare
the integral of the electric field per unit length of the cylinder to the charge per unit length
of the cylinder,

2πρEρ =
1

ǫ0

N
∑

i=0

2πρiρsi

or

Eρ =
1

ǫ0ρ

N
∑

i=0

ρiρsi

where the sum is over the N surfaces which have ρi < ρ.
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(a) In this case there are no surfaces inside ρ, so Eρ = 0 for ρ < a.
(b) In this case there is one surface at a, so we get

Eρ =
ρsa

ǫ0ρ

(c) In this case there are two surfaces, the first at a with ρsi = ρs, and the second at b with
ρsi = −ρs, so we get

Eρ =
ρsa

ǫ0ρ
−

ρsb

ǫ0ρ

=
ρs

ǫ0ρ
(a − b)
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