
EE 333 Electricity and Magnetism, Fall 2009
Homework #4 solution

1.37. In Figure P1.37 a spherical cloud of charge in free space is characterized
by a volume charge density
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The cloud is symmetric, so the we have right away that
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The final expression for Er is then
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1.47. (a) In a region of space in the neighborhood of an electromagnetic plastic
heat sealer, the magnetic field of the source is unknown and is assumed to be
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arbitrarily oriented. Suggest a practical procedures to measure this arbitrarily
oriented magnetic field.
(b) The magnetic field intensity ~B of a short electric current source may be
approximately given in the cylindrical coordinates by

~B =

(

K1

1

ρ2
−

K2

ρ

)

sin ωtφ̂

To measure this magnetic field, the rectangular conducting loop shown in Figure
P1.47 is placed in the y-z plane.
(i) Calculated the induced EMF at the terminals of the conducting loop.
(ii) Show that the variation of the induced EMF and the magnetic flux satisfy
Lenz’s law.
(a) A good procedure for measuring a magnetic field is with a small wire loop over which we
measure the electric voltage, induced EMF. In that case we have by Faraday’s law that the
voltage along one turn of the loop is equal to the area of the loop times the time-derivative
of the magnetic field perpendicular to the loop,

V = A
∂B⊥

∂t

If the magnetic field is harmonic with frequency ω, for example

~B = ~B0 sin ωt

we get

V0 = AωB0⊥

where V0 is the amplitude of the EMF and ~B0⊥, is the amplitude of the magnetic field
perpendicular to the loop. Orient the loop in three different mutually perpendicular directions
to measure the vector magnetic field.
(b)
(i) I use Faraday’s law,

∮

L

~E · d~l = − ∂

∂t

∫

S

~B · d~s

In this case, the line integral of the electric field is the measured EMF, and the magnetic field
is oriented in the φ-direction such that we can carry out a scalar integral of the magnitude
of ~B. I also choose the direction of integration around the loop to be such that the surface
vector is oriented in the φ̂ direction. This makes the terminal further from the z-axis the

positive terminal for a postive ∂ ~B
∂t

.
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V = − ∂

∂t

∫

S

Bφds

= − ω cos ωt a

∫ ρ1+b
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(ii) If the ∂ ~B
∂t

points in the φ̂ direction, the electric field will point in the negative right-

hand direction around the φ̂ direction (because of the ’-’ sign in Faraday’s alw). That EMF
will attempt to drive a current through the wire. According to Faraday’s law that current
will create a magnetic field pointed in the right-hand direction around the direction of the
current. That direction is in the −φ̂ direction. Therefore the fields and EMF satisfy Lenz’s
law.
2.26. (a) The vector ~E expressed in the cylindrical coordinate system

~E = 3ρ2ρ̂ + ρ cos φφ̂ + ρ3ẑ

represents a static electric field. Calculate the volume charge density associated
with this electric field at the point (0.5, π

3
, 0). (b) If the vector ~B represents a

magnetic flux density in free space,

~B = Brr̂ + sin θ cos φθ̂ + r sin φφ̂

find the component Br of this vector. (Specify an integration constant such that
Br remains finite as r → 0).
(a) We use Gauss’ law for electric fields,

ρ = ǫ0∇ · ~E

which in cylindrical coordinates is

ρ =ǫ0

[

1

ρ

∂ρEρ

∂ρ
+

1

ρ

∂Eφ

∂φ
+

∂Ez

∂z

]

=ǫ0 [9ρ − sin φ]

(b) We use Gauss’ law for magnetic fields,

∇ · ~B = 0

which then fixes the relationship between the three components of the magnetic field. In
spherical coordinates we get
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∇ · ~B =
1

r2

∂r2Br
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+

1

r sin θ

∂

∂θ
(Bθ sin θ) +

1
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=
1

r2

∂r2Br
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1
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1

r sin θ
r cos φ

=
1

r2

∂r2Br
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2

r
cos θ cos φ +
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Because ∇ · ~B = 0 we then write

1

r2

∂r2Br

∂r
= −2

r
cos θ cos φ − cos φ

sin θ
or

∂r2Br

∂r
= −2r cos θ cos φ − r2

cos φ

sin θ

Integrating we get

r2Br = −r2 cos θ cos φ − r3

3

cos φ

sin θ
+ C

Or

Br = − cos θ cos φ − r cos φ

3 sin θ
+

C

r2

I will specify C such that C/r2 → 0 as r → 0 (C = 0). Thus

Br = − cos φ cos θ − r cos φ

3 sin θ

= − cos φ
(

cos θ − r

3 sin θ

)

2.35. The superposition of two uniform plane waves of equal magnitudes and
propagating in opposite directions results in a composite wave having electric
and magnetic fields given by

~E(z, t) =2Em sin β0z sin ωt x̂

~H(z, t) =2
Em

η0

cos β0z cos ωt ŷ

Show that these fields satisfy Maxwell’s equations and the scalar wave equations
for time-harmonic electric and magnetic fields.
First we note that it is consistent with the two version of Gauss’ law. The non-zero com-
ponents do not depend on their corresponding coordinate, so the divergence must be zero.
Next, check Faraday’s law.
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∇× ~E = −µ0

∂ ~H

∂t

The only non-zero derivative in the curl is ∂Ex

∂z
, which appears in the ŷ component of the

curl.

−∂Ex

∂z
ŷ = −µ0

∂ ~H

∂t

−2Emβ0 cos β0z sin ωt ŷ = −2µ0

Em

η0

ω cos β0z sin ωt ŷ

β0 = µ0

ω

η0

ω

β0

=
η0

µ0

=

√

µ0

ǫ0

1

µ0

=
1

√
µ0ǫ0

and that is what we expect. Now for Ampere’s law,

∇× ~B = µ0ǫ0

∂ ~E

∂t

or, since ~B = µ0
~H,

∇× ~H = ǫ0

∂ ~E

∂t

Only the ∂Hy

∂z
derivative is non-zero. It is part of the x̂ component of the curl,

−∂Hy

∂z
= ǫ0

∂Ex

∂t

2β0

Em

η0

sin β0z cos ωt = 2ǫ0ωEm sin β0z cos ωt

β0

η0

= ǫ0ω

ω

β0

=
1

η0ǫ0

=
1

√

µ0

ǫ0
ǫ0

=
1

√
µ0ǫ0

and that is what we expect.
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