
EE 333 Electricity and Magnetism, Fall 2009
Homework #5 solution

2.17. Show that the vector

~B =
1

r2
sin φ cos2 θr̂

may represent a static magnetic flux density vector. Determine the current den-
sity associated with it.
The magnetic field is a valid static magnetic field if has zero divergence. Note only the radial
component of the field is non-zero

∇ · ~B =
(

∇ · ~B
)

r

=
1

r2

∂r2Br

∂r

=
1

r2

∂

∂r
sin φ cos2 θ

=0

The field thus has zero divergence and obeys Gauss’ law for magnetic fields. We find the cur-
rent distribution from Ampere’s law. Because the magnetic field only has a radial component,
only the terms ∂Br

∂φ
and ∂Br

∂θ
mayh be non-zero. Thus,

~J =
1

µ0

∇× ~B

=
1

µ0

[

1

r sin θ

∂Br

∂φ
θ̂ −

1

r

∂Br

∂θ
φ̂

]

=
1

µ0

[

1

r sin θ

1

r2
cos φ cos2 θ θ̂ +

1

r

1

r2
sin φ 2 cos θ sin θφ̂

]

=
1

µ0r3

[

cos φ cos2 θ

sin θ
+ 2 sin φ cos θ sin θ

]

2.19. The vector ~E expressed in the cyllindrical coordinate system by

~E = 3ρ2 ρ̂ + ρ cos φ φ̂ + ρ3 ẑ

represents a static electric field. Calculate the volume charge density associated
with this electric field at the point (0.5, π/3, 0).
We use Gauss’ law for electric fields,

ρ = ǫ0∇ · ~E

which in cylindrical coordinates is
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ρ =ǫ0

[

1

ρ

∂ρEρ

∂ρ
+

1

ρ

∂Eφ

∂φ
+

∂Ez

∂z

]

=ǫ0 [9ρ − sin φ]

3.1. The electric field ~E = 3z2y cos(108t) x̂ is applied to a dielectric material
(Lucit) of ǫr = 2.56. Determine the following:

(a) The electric polarization.

(b) The induced polarization charge density ρp. Explain physically the reason
for the zero value of ρp.

(c) The polarization current density Jp.

(a) The electric polarization is related to the electric field as

~P = ǫ0χe
~E

where χe = ǫr − 1 = 1.56. Thus,

~P =3 × 1.56ǫ0z
2y cos

(

108t
)

x̂

=4.68z2y cos
(

108t
)

x̂

(b) The polarization charge density is related to the polarization through a divergence.
In this case the polarization only points in the x̂ direction so we only need to take the
x-derivative.

ρp = −∇ · ~P

=
∂Px

∂x

= 0

This answer makes sense. The polarization is constant along the direction of the polarization.
Therefore, for every charge shifted out of a region, an equal charge is shifted into the region.
(c) The polarization current density is

~Jp =
∂ ~P

∂t

= − 3z2y × 108
× sin

(

108t
)

= − 3 × 108z2y sin
(

108t
)

3.2. A coaxial power cable has a core (conductor) of radius a. The region between
the inner and outer conductors is filled with two concentric layers of dielectrics,
ǫ1 = 1.5ǫ0, and ǫ2 = 4.5ǫ0 as shown in Figure P3.2. If the outer conductor is
grounded while the inner conductor is raised to a voltage that produces a linear
charge density distribution ρl, determine the following:
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(a) The electric flux density, the electric field intensity, and the polarization in
the two regions inside and the air outside the cable.

(b) The polarization surface charge at ρ = a, and ρ = r1.

(c) The polarization charge density in region 2.

The inner conductor is charged to a charge of ρl per unit length of the inner conductor. The
electric field is radial due to the symmetry of the problem.
(a) The electric flux density is the ~E vector. We use Gauss’ law for electric fields in integral
form,

∮

S

~D · d~s =

∫

V

ρ dV

Make the surface be a cylinder of fixed radis and length l. As long as the volume contains
the inner conductor, but not the outer conductor, then

∫

V

ρ dV = lρl

If it contains the outer conductor the RHS is zero.
The surface integral is

∮

S

~D · d~s = 2πrlDρ

Overall we then have (eliminate l)

Dρ =

{

ρl

2πρ
in region 1 and 2

0 outside outer conductor

We also have Dρ = ǫEρ, so Eρ = Dρ

ǫrǫ0
. And since Pρ = χeǫ0Eρ, we can see that

Pρ = χeǫ0

Dρ

ǫrǫ0

=
ǫr − 1

ǫr

Dρ =

(

1 −
1

ǫr

)

Dρ

Now we are ready to do the problem. In region 1,

Dρ =
ρl

2πρ

Eρ =
Dρ

ǫrǫ0

=
ρl

2πǫrǫ0ρ
=

ρl

3πǫ0ρ

Pρ =

(

1 −
1

ǫr

)

Dρ =

(

1 −
1

1.5

)

ρl

2πρ
=

1

3

ρl

2πρ
=

ρl

6πρ

Note that

ǫ0Eρ + Pρ =
ρl

3πr
+

ρl

6πr
=

ρl

πr

(

1

3
+

1

6

)

=
ρl

πr

1

2
=

ρl

2πr
= Dρ
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as we expect.
In region 2,

Dρ =
ρl

2πρ

Eρ =
Dρ

ǫrǫ0

=
ρl

2πǫrǫ0ρ
=

ρl

2 × 4.5ǫ0ρ
=

ρl

9πǫ0ρ

Pρ =

(

1 −
1

ǫr

)

Dρ =

(

1 −
1

4.5

)

ρl

2πρ
=

7

9

ρl

2πρ
=

7ρl

18πρ

Note that

ǫ0Eρ + Pρ =
ρl

πρ

(

1

9
+

7

18

)

=
ρl

πρ

(

2

18
+

7

18

)

=
ρl

πρ

1

2
=

ρl

2πρ
= Dρ

as we expect.
Outside the cable we have Dρ = 0, so Eρ = 0 and Pρ = 0 because of the proportionality
between the three quantities.
(b) At the interface between the inner conductor and region 1 the polarzation changes
discontinuously from Pρ = 0 in the conductor (because there is no electric field in the
conductor and the polarization is proporational to the electric field), to Pρ = ρl

6πa
. We know

that ∇ · ~P = −ρp, which in integral form is written as

∮

S

~P · d~s = −

∫

V

ρp dV

Because the field changes discontinuously at the surface we can reduce the size of the volume
to an infinitesimal thickness around the interface in order to find the total amount of charge
at the interface. In that case we must change the volume integral to a surface integral and the
volume charge density to a surface charge density. The RHS of the equation then becomes

−

∫

S

ρps ds

where ρps is the polarization surface charge density. The left-hand side reduces to two surface
integrals because the edges have infinitesimal size. Thus

∮

S

~P · d~s =

∫

S in region 0

~P · d~s1 +

∫

S in region 1

~P · d~s2

Where d~s1 and d~s2 are surface vector elements which point away from the interface (in the
case of 1 that would radially outward, and in the case of 0 that would be radially inward).
So in writing this we were careful to consider the positive directions of flux through the
surfaces. They have to be away from the interface. We note that d~s0 = −d~s1, and thus we
can write

∮

S

~P · d~s =

∫

S

(

~P1 −
~P0

)

· d~s
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Because the fields are perpendicular to the surface we can simplify to

∫

S

Pρ1 − Pρ0 ds

Now combine the LHS and the RHS to get

∫

S

Pρ1 − Pρ0ds =

∫

S

ρpsds

The integrands must be the same, so we get

Pρ1 − Pρ0 = −ρps

Now, at the interface between the conductor and region 1 we have Pρ0 = 0 and thus

Pρ1 = −ρps

ρps = −Pρ1(ρ = a) = −
ρl

6πa

(note the units work out OK as they should: linear charge density diviced by length equal
surface charge density). At the interface between region 1 and region 2 we get

ρps = − (Pρ2(ρ = r1) − Pρ1(ρ = r1))

= −

(

7ρl

18πr1

−
ρl

6πr1

)

= −
ρl

πr1

(

7

18
−

1

6

)

= −
ρl

πr1

(

7

18
−

3

18

)

= −
ρl

πr1

4

18

= −
2ρl

9πr1

(c) The polarization charge density (volume density) in region 2 is simply the negative of
the divergence of the polarization vector. It is in cylindrical coordinates, and only the ρ̂

component is non-zero. Thus we can write

ρp = −∇ · ~P

= −
1

ρ

∂ρPρ

∂ρ

= −
1

ρ

∂

∂ρ

ρl

6π

=0
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