
EE 333 Electricity and Magnetism, Fall 2009
Homework #6 solution

3.8.

(a) In characterizing materials according to their reactions to externally applied
electric and magnetic field, we in general identified three different types of
materials.

(i) Indicate these three types of materials and explain (in a few words)
their basic characteristics.

(ii) Identify the induced charge and current sources as a result of the inter-
action of the external electric and magnetic fields with these materials.

(iii) Explain the impact of these new induced sources on Maxwell’s equa-
tions.

(b) A spherical conductor of radius a is charged with a total positive charge Q.
If the conductor is coated with two different dielectric materials of radii r1

and r2 as shown in Figure P3.8, determine

(i) The electric flux density ~D, the electric field intensity ~E, the polar-

ization, ~P , and the polarization charge density ρp in regions 1, 2, and
3.

(ii) The polarization surface charge density ρps at the interface between
regions 1 and 2 (i.e. at r = r1).

(a) (i) The three type of materials are conducting materials, dielectric materials, and
magnetic materials. In conducting materials a current will flow in response to a
applied external electric field. In a dielectric material charged will not flow but
will shift slightly in response to an external applied electric field. The shifted
currents result in an electric field which points opposite the external field, thus
reducing the electric field in the material. In a magnetic material internal dipole
moments are rotated or created with the result that a magnetic field is created.
This magnetic field can either point in the direction of the externally applied
magnetic field or in the opposite direction.

(ii) In the conductor a current will flow in the direction of the electric field. In a
dielectric charges are induced, with negative charges shifted in the direction of
the electric field and positive charges shifted in the opposite direction of the
electric field. This will cause a net charge in some locations: at surfaces, and in
places where the applied field diverges. In a magnetic field the induced magnetic
moments are described in terms of currents.

(iii) Maxwell’s equations still hold, but instead of only considering the applied field,
charges, and currents, we must consider all fields, charges, and currents. This is
more complicated. To reduce the complication we invent the quantities ~D and ~H ,
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which only respond to the externally applied charges and currents, and not to any
that are induced in materials. Once the problems is solved in terms of ~D and ~H ,
we can then determine ~E, and ~B, which are the physical quantities.

(b) (i) Because of symmetry the fields must be radia. Use Gauss’ law in integral form

∮

S

~D · d~s =

∫

V

ρ dV

and let S be a spherical surface of radius r > a, and we get

4πr2Dr = Q

or

Dr =
Q

4πr2

Next, ~E = Err̂, and Er = Dr

ǫrǫ0
, and

Er =











Q

4πǫ1rǫ0r2 a < r ≤ r1

Q

4πǫ2rǫ0r2 r1 < r ≤ r2

Q

4πǫ0r2 r3 < r

Next, ~P = ǫ0χe
~E,

Pr = ǫ0χeEr = ǫ0 (ǫr − 1)Er = ǫ0 (ǫr − 1)
Dr

ǫrǫ0

=

(

1 − 1

ǫr

)

Dr

so

Pr =















(

1 − 1

ǫ1r

)

Q

4πr2 a < r ≤ r1
(

1 − 1

ǫ2r

)

Q

4πr2 r1 < r ≤ r2

0 r2 < r

To compute the polarization volume charge density we must compute the diver-
gence, and the divergence of ~P is zero in all three regions. Therefore, ρp = 0 in
all three regions.

(ii) The polarization surface charge density is found from Gauss’ law for polarization
charges which says that

∮

S

~P · d~s = −
∫

V

ρp dV

and can be transformed to

(

~P2 − ~P1

)

· n̂ = −σP
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where n̂ is a normal vector which points from region 1 into region 2, and ~P2 and
~P1 are the limits of ~P when the surface is appraoch from region 2 and region 1
respectively. At the interface between region 1 and region 2 we then have (choosing
n̂ = r̂)

σp = − (P2r − P1r)

=

[(

1 − 1

ǫ1r

)

−
(

1 − 1

ǫ2r

)]

Q

4πr2

=

[

1

ǫ2r

− 1

ǫ1r

]

Q

4πr2

We can then immediately by analog see that at the region 2 to 3 interface we
must have

σp =

[

1 − 1

ǫ2r

]

Q

4πr2

3.9. The interface between regions 1 and 2 is charged with a surface charge
density ρs = 0.2 C/m2. Region 1 (z > 0) is air, whereas region 2 (z < 0) is a
material with ǫ2 = 2ǫ0 and µ2 = 3.1µ0. If the electric flux density in region 1 is
given by ~D1 = 3x̂ + 4

√

yŷ + 3ẑ, and the magnetic field intensity in region 2 is

~H2 = 4x̂ + 3y2ŷ + 5ẑ

determine the electric flux density ( ~D2) and the magnetic flux density ( ~B1) at
the interface between regions 1 and 2 in Figure P3.9.
For figuring ~D2 I am going to use the two boundary conditions,

(

~E2 − ~E1

)

× n̂ = 0

and

(

~D1 − ~D2

)

· n̂ = σ

where n̂ goes from region 2 to region 1, and is parallel to the z-axis. So we can find D2z from

D1z − D2z = σ

D2z = D1z − σ = 3 − 0.2 = 2.8 C/m2

For the x and y components we see that

~E1‖ = ~E2‖

or
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~D1‖

ǫ1

=
~D2‖

ǫ2

or

~D2‖ =
ǫ2

ǫ1

~D1‖

And note that ~D1‖ = x̂D1x + ŷD1y, and ǫ2 = 2ǫ1, so

~D2‖ = 2 [3x̂ + 4
√

yŷ] = 6x̂ + 8
√

yŷ

Now we can combine, ~D2 = ẑD2z + ~D2‖ and get

~D2 = 6x̂ + 8
√

yŷ + 2.8ẑ C/m2

at the interface! Next we wish to find ~B1. They mention no surface current, so let’s assumet
that ~Js = 0, and we can then write

(

~B1 − ~B2

)

· n̂ = 0

and

(

~H1 − ~H2

)

× n̂ = 0

From the first equation we get that

B1z = B2z = µH2z = 3.1µ0 × 5 = 15.5µ0 = 15.5 × 4π × 10−7 = 19.5µT

For the x and y component we note that

~H1‖ = ~H2‖

or

~B1‖ = µ1
~H2‖

~B1‖ =µ0

(

4x̂ + 3y2ŷ
)

=5.03 µTx̂ + 3.77
µT

m2
y2ŷ

Now we can combine terms and get

~B1 = 5.03 µT x̂ + 3.77
µT

m2
y2 ŷ + 19.5 µT ẑ

at the interface!
3.15 (b). A plane wave is incident normal to the surface of sea water having
the following constant µr = 1, ǫr = 79, and σ = 3 Ω−1m−1. The electric field is
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parallel to the surface and its magnitude is 10 V/m just inside the surface of the
water. At what depth would it be possble for a submarine to receive a signal if
the sub’s receiver requires a field intensity of 10 µV/m? Make your calculations
at the following two frequencies:

(i) 20 kHz. (Can displacement current be neglected?)

(ii) 20 GHz. (Can the conduction current be neglected?)

(i) Use the spatial decay constant

α =
ω
√

µǫ
√

2

√

√

1 +
( σ

ωǫ

)2

− 1

The question of whether the displacement current can be ignored relates to Ampere’s
law. We have

∇× ~H = σ ~E + ǫ
∂ ~E

∂t

which can be re-written, assumingt that ~E has the time-variation ejωt as

∇× ~H = σ ~E + jωǫ ~E

The displacement current can thus be ignored if

ωǫ ≪ σ

so let’s determine

σ

ωǫ
=

3

2 × π × 20 × 103 × 8.854 × 10−12
= 2.696 × 106

It is therefore safe to ingore the displacement current and simplify to

α =
ω
√

µǫ
√

2

√

σ

ωǫ
=

√

ωµσ

2

Inserting known values we get

α =

√

2 × 20 × 103 × 4 × π × 10−7 × 3

2
=0.487 m−1

The depth, d, at which the signal can be detected is then determined from
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Edetect = Einitiale
−α d

or

d =
1

α
ln

Einitial

Edetect

Inserting values we get

d =
1

0.487
ln

10

10 × 10−6
= 28.4 m

(ii) This time the question is whether the conduction current can be ignored. Again we
evaluate

σ

ωǫ
=

3

2 × π × 20 × 109 × 79 × 8.854 × 10−12
= 0.034

which is small. So we can Taylor expand

√

1 +
( σ

ωǫ

)2

= 1 +
1

2

( σ

ωǫ

)2

and thus

√

√

1 +
( σ

ωǫ

)2

− 1 =

√

1

2

( σ

ωǫ

)2

=
σ√
2ωǫ

Now the expression for α simplifies to

α =
ω
√

µǫ
√

2

σ√
2ωǫ

=

√

µ

ǫ

σ

2

Inserting known values we get

α =

√

4 × π × 10−7

79 × 8.854 × 10−12
× 3

2
= 63.6 m−1

and the penetration depth is

d =
1

63.6
ln 106 = 0.22 m
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3.17. A high-voltage wire of radius a is insulated with an insulation coating of
radius b and dielectric constant ǫ = ǫrǫ0. The insulated high-voltage wire is
suspended at the center of a grounded pipe of radius c. The geometry of the
suspended cable is shown in Figure P3.17. When a high-votage V is applied
between the center wire and the grounded pipe, a charge ρs (per unit area) was
added to the center of the conductor.

(a) Determine the electric flux density ~D inside the insulation (region 1) and
in the air (region 2).

(b) Determine the electric field intensity ~E and the polarization ~P in regions 1
and 2.

(c) Determine the free charge density ρs at the surface of the grounded pipe
of radius c.

(d) Determine the induced surface polarization charge at the interface between
regions 1 and 2, that is at ρ = b.

(e) Plot the electric field ~E as a function of ρ for a < ρ < c.

(f) Repeat part e for the case in which we replace region 1 by air and place
the dielectric material ǫ = ǫ0ǫr in region 2.

(g) As a result of the plots in parts e and f, which case is better from the
insulation viewpoing?

(a) We use Gauss’ law for electric fields,

∮

S

~D · d~s =

∫

V

ρ dV

Apply it to a length, L of pipe, realize that D is radial, and we get

2πρLDρ = 2πaLρs

or

Dρ =
a

ρ
ρs

which is valid in both region 1 and 2.

(b) The electric field is

~E =
~D

ǫ
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so we get

Er =

{

a
ρ

ρs

ǫrǫ0
a < ρ < b

a
ρ

ρs

ǫ0
b < ρ < c

The polarziation is ~P = ǫ0χe
~E = ǫ0 (1 − ǫr) ~E = (1 − ǫr)

~D
ǫr

=
(

1 − 1

ǫr

)

~D, such that

Pr =

{

(

1 − 1

ǫr

)

a
ρ
ρs a < ρ < b

0 b < ρ < c

(c) The field outside the grounded pipe should be zero, so the total amount of charge inside
the pipe should be zero, so

2πaρsa = 2πcρsc

or

ρsc = ρsa

a

c

(d) We have for polarization fields

(

~P2 − ~P1

)

· n̂ = −ρsp

where n̂ points in the direction from region 1 into region 2. Choose n̂ = ˆrho, and we
get

P2r − P1r = −σps

or

σps = P1r − P2r =

(

1 − 1

ǫr

)

a

b
ρs

(e) To do this I pick some numbers: ǫr = 3, a = 1, b = 2, c = 3, ǫ0 = 1, and σs = 1.
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(f) To do this I simply move the ǫr from the upper equation tot he lower equation in the
formula for Eρ, and get

(g) If the purpose of the insulator is to reduce the maximum electric field, then placing
the insulator at the center is best. If on the other hand the purpose of the insulator is
to create the smallest electric field at the inside surface of the pipe it is better to place
the insulator close to the pipe.
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