
EE 333 Electricity and Magnetism, Fall 2009
Homework #7 solution

4.4. Consider the linear quadrupole shown in Figure P4.4. It basically consists
of two dipoles superposed along the z axis. Determine the potential P at a far
distance r (i.e. r ≫ d) from the charges and the electric field at that point. Use
the approximations
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Now using the approximations we get
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In order to get a better approximation we would need to expand to higher degree.
4.5. Following a procedure similar to the one illustrated in examples 4.7 and 4.8,
determine the capacitance of two concentric spherical conductors of radii a and
b when a spherical dielectric shell of thickness d is placed concentrically between
the conductors as shown in Figure P4.5a. The dielectric shell has an inner radius
c and dielectric constant ǫ = ǫ0ǫs. Show that the total capacitance is the sum of
three series capacitances each with a homogeneous dielectric layer as shown in
Figure P4.5b.
We do this by applying charge Q to the inner conductor and charge −Q to the outer conductor
and then computing the potential difference between them. Using Gauss’ law and symmetry
we get we get
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And the electric field is then
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Next, we integrate the electric field
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and the capacitacen is then
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From the voltage integral above we can fairly quickly see that if we had a conductor at c,
with charge −Q the voltage drop would be
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resulting in a capacitance
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and similar for [c; c + d], we get
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Now replacing these into the denominator of the expression for C, we get
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which is the series combination of C1, C2, and C3.
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