
EE 333 Electricity and Magnetism, Fall 2009
Homework #11 solution

4.24. At the interface between two magnetic materials shown in Fig P4.24, a
surface current density JS = 0.1 ŷ is flowing. The magnetic field intensity ~H2 in
region 2 is given by ~H2 = 3x̂ + 9ẑ. Determine the magnetic flux ~B1 and ~B2 in
regions 1 and 2, respectively.
We have two boundary equations,

n̂ ·
(

~B1 − ~B2

)

= 0 n̂×
(

~H1 − ~H2

)

= ~Js

From the first equation we get simply that B1z = B2z . And, B1z = B2z = 3µ0H2z = 27µ0.
From the second equation we see that (since n̂ = ẑ that
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= ŷJsy

Which reduces to

H1y −H2y = 0 H1x −H2x = Jsy

So H1y = H2y = 0, and H1x = H2x + Jsy = 3 + 0.1 = 3.1. Now compute the magnetic field
components, B1x = 5µ0H1x = 15.5µ0, and B1y = 0. The magnetic field in region 1 is then

~B1 = 15.5µ0x̂+ 27µ0ẑ

In region 2 we have B2x = 3µ0H2x = 9µ0, and B2y = 0, so overall we get

~B2 = 9µ0x̂+ 27µ0x̂

4.25. Consider the problem of determining the magnetic vector potential ~A inside
and outside an infinite circular cylindrical solenoid of radius a. The solenoid has
N turns per unit length and the current in the winding is I.

(a) Use the curl relation between ~A and the magnetic field ~B = ∇ × ~A and
Stokes’ theorem to show that

∮

c

~A · d~l =

∫

s

~B · d~s

where s is the area encircled by c.

(b) Based on symmetry considerations, select suitable contours for ~A inside
and outside the solenoid to show that

~A =

{

µ0NIρ

2
φ̂ ρ < a

µ0NIa2

2ρ
φ̂ a < ρ
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(a) Stokes’ theorem says that

∮

c

~F ·~l =

∫

S

∇× ~F · d~s

If we set ~F = ~A we get

∮

c

~A ·~l =

∫

s

∇× ~A · d~s =

∫

s

~B · d~s

QED

(b) To do this problem we first need to determine the magnetic field. From symmetry
considerations we see that at each radial distance from the center of the solenoid, ρ,
the magnetic field must point along the z-axis independent of the azimuthal angle.
This is due to the rotational symmetry of the solenoid.

∮

l

~B · d~l = µ0

∫

s

~J · d~s

with any rectangular contour that extends from beyond one side of the solenoid to
beyond the opposite side of the solenoid. Only the parts of the contour along the axis
contribute, and since those contributions must be opposite (yet same field), and the
total current through the contour is zero, the field outside the solenoid must be zero.

Next consider another rectangular which extends from inside the solenoid to outside
it. It extends distance L along the axis of the solenoid. Only the contour path along
the axis of the solenoid, inside the solenoid, has non-zero magnetic field contribution.
We then get

LBz = µ0LNI

or

Bz = µ0NI

The magnetic field of a solenoid is then

~B =

{

ẑµ0NI inside

0 outside

Now we are ready to compute ~A. Pick a contour which is circular and goes in the right-
hand direction around the z-axis at a distance ρ. Note that since ~B = ẑBz, ~A = φ̂Aφ.
Inside the solenoid we then have

2πρAφ = πρ2Bz = πρ2µ0NI
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or

Aφ =
µ0ρNI

2

whereas outside the solenoid we have

2πρAφ = πa2Bz = πa2µ0NI

or

Aφ =
µ0a

2NI

2ρ

Putting it together we get

~A =

{

φ̂µ0ρNI

2
ρ ≤ a

φ̂µ0a2NI

2ρ
a < ρ

4.29. Use the result of equation 4.99a for the magnetic flux at a far point from a
circular current loop to determine approximately the mutual inductance between
two thin coaxial circular rings of radii a and b. Assume that the distance d

between the two rings is much larger than a and b.
The magnetic field from a small current loop a carrying current I is

~B =
µ0Ia

2

4r3

(

2 cos θr̂ + sin θθ̂
)

On the axis it reduces to

Bz =
µ0Ia

2

2r3

The amount of flux through a small coaxial loop of radius b at distance d is then

ψ = πb2Bz =
µ0πIa

2b2

2d3

The inductance is then

L =
ψ

I
=
µ0πa

2b2

2d3

Note that it is symmetric. I.e. same result whether a or b is generating the field with current
I.
7.2. Consider the following voltage and current distributions:

v(z, t) = vo cos β (z − ut) i(z, t) =
vo

Z0

cos β (z − ut)
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where β is a constant, u = 1
√

lc
and Zo =

√

l

c
. By direct substitution, verify that

v(z, t) and i(z, t) satisty the transmission line equation 7.10 to 7.13.
The transmission line equations that we are to verify are

−dv
dz

=l
di

dt

− di

dz
=c

dv

dt
d2v

dz2
=lc

d2v

dt2

d2i

dz2
=lc

d2i

dt2

Check the first equation

voβ sin β (z − ut) =lβu
vo

Z0

sin β (z − ut)

1 =
lu

Z0

1 =
l 1
√

lc
√

l
c

1 =

√

l
c

√

l
c

1 =1

Check the second equation

vo

Z0

β sin β (z − ut) =cv0βu sinβ (z − ut)

1

Z0

=lu
√

c

l
=

c√
lc

√

c

l
=

√

c

l

1 =1

Check the 3rd equation
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voβ
2 cosβ (z − ut) =volcβ

2u2 cos (z − ut)

1 =lcu2

1 =
lc

(√
lc

)2

1 =1

Check the 4th equation

vo

Z0

β2 cosβ (z − ut) =lc
vo

Z0

β2u2 cosβ (z − ut)

1 =lcu2

1 =
lc

(√
lc

)

2

1 =1
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