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PREFACE

Electromagnetic energy has highly diversified applications in communications, medi-
cine, processing, and characterization of materials, biology, atmospheric sciences,
radar systems, and in high-speed electronics and integrated circuits. Students in their
junior or senior year of electrical engineering are expected to have either academically
or in practice encountered applications involving electromagnetic fields, waves, and
energy. For example, students should be familiar academically with electromagnetics
in their introductory physics courses. Practical applications based on electromagnetics
technology such as electric power lines, antennas, microwave ovens, and broadcast
stations are encountered in our daily activities. Therefore, when students take electro-
magnetics courses they are expected to be excited and prepared to gain in-depth
knowledge of this important subject. Instead, however, they quickly get bogged down
with equations and mathematical relations involving vector quantities and soon lose
sight of the interesting subject and exciting applications of electromagnetics.

It is true that the mathematical formulation of electromagnetics concepts is
essential in quantifying the relationship between the electromagnetic fields and their
sources. Integral and differential equations involving vector quantities are important
in describing the characteristics and behavior of electromagnetic fields under a wide
variety of propagation and interaction conditions. It is unfortunate, however, that the
overall emphasis of the subject may be placed on these mathematical relations and their
clever manipulation. Instead, the physical and exciting phenomena associated with
electromagnetic radiation should be foremost, and mathematics should always be
approached as a way to quantify and characterize electromagnetic fields, their radia-
tion, propagation, and interactions, It is with this in mind that I have approached the
development of this junior-level electrical engineering book on electromagnetic fields
and waves.

Thiere are several ways of organizing an introductory book on electromagnetics.
One way is to start with the electrostatic and magnetostatic concepts, and continue to
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work toward the development of time-varying fields and dynamic electromagnetics.
This has been the traditional procedure adopted in many textbooks. The other ap-
proach involves describing the mathematical relations between the time-varying elec-
tromagnetic fields and their sources by first introducing Maxwell’s equations in integral
forms. This allows a quick move toward the introduction of the propagation character-
istics of plane waves. It is generally agreed that the second approach provides a faster
pace toward the development of more exciting and dynamic aspects of electromagnet-
ics, the subject matter that maintains high levels of enthusiasm for students and helps
them carry on their otherwise difficult mathematical tasks.

I found the second method of organization to be helpful because students at the
junior level usually have previous exposure to static fields. Also, the delay in discussing
Maxwell’s equations toward the end of the course does not help in consolidating and
comprehending these important concepts and ideas. A few introductory textbooks
adopt this approach. Although I used some of these books as texts when I mitially
taught the electromagnetics course series, I found it to be more constructive to include
a concise description of the properties of the static electric and magnetic fields in terms
of their charge and current sources before introducing Maxwell’s equations. In addi-
tion, I have tried in this text to show how Maxwell’s equations actually evolved from
experimental observations made by Coulomb, Biot and Savart, Faraday and Ampere.

This brief introduction of the properties of electromagnetic fields and the exper-
iments by pioneers in this field provides students with insight into the physical proper-
ties of these fields and help in developing a smoother transition from experimental
observations to the mathematical relations that quantify them. In a sense, therefore,
we may consider the adopted approach in this book to be a combination and a middle
ground of the traditional approach of introducing the subject of electromagnetics in
terms of static fields and the fast-paced approach of promptly introducing Maxwell’s
equations.

Additional features of this text are the inclusion of many examples in each chapter
to help emphasize key concepts, detailed description of the subject of “reflection and
refraction of plane waves of oblique incidence on a dielectric interface,” including some
of its applications in optics, and a detailed introduction to antennas including physical
mechanisms of radiation and practical design of antenna arrays. The treatment of the
subject of transmission lines was comprehensive and included a detailed treatment of
transients and sinusoidal steady-state analysis of propagation on two conductor lines.
Another important feature of this text is the introductory section on *“numerical
techniques” included in chapter 4. At this time and age, many solutions are handled
by computers and, with the availability of this technology, solutions to more realistic
and exciting engineering problems may be included in homework assignments and even
simulated and demonstrated in classrooms. It is essential, however, that students be
familiar with the commonly used computational procedures such as the finite difference
method and the method of moments, learn of the various approximations involved, and
be aware of the limitations of such methods. Recently, some focused efforts™ have

* NSE/IEEE Center on Computer Applications in Electromagnetic Education (CAEME), University
of Utah, Salt Lake City, UT 84112,
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attempted to stimulate, accelerate, and encourage the use of computers and software
tools to help electromagnetic education. Many educational software packages are now
available to educators, and it is imperative that students be aware of the capabilities,
accuracies, and limitations of some of these software tools—particularly those that use
computational techniques and numerical methods. It is with this in mind that we
prepared the introductory material on computational methods in chapter 4. Further-
more. educators and students are encouraged to use available software from CAEME*
to help comprehend concepts, visualize the dynamic-field phenomena, and solve inter-
esting practical applications.

I would like to conclude by expressing my sincere thanks and appreciation to my
students who, during the years, provided me with valuable feedback on the manuscript.
Comments and suggestions by Professor Robert S. Elliott of University of California,
Los Angeles, were deeply appreciated. I would also like to express my sincere appre-
ciation to Ruth Eichers and Holly Cox for their expert efforts in typing and preparing
the manuscript. My gratitude, sincere thanks, deep appreciation, and love are also
expressed to my family for patience, sacrifice, and understanding during the completion
of this endeavor.

Magdy F. Iskander

* NSF/IEEE Center on Computer Applications in Electromagnetic Education (CAEME), University
of Utah, Salt Lake City, UT 84112,



EFHAPTER 1

VECTOR ANALYSIS
AND MAXWELL’S
EQUATIONS IN
INTEGRAL FORM

1.1 INTRODUCTION

In this chapter we will first review some simple rules of vector algebra. These basic
vector operations are first defined independent of any coordinate system and then
specifically applied to the Cartesian, cylindrical, and spherical coordinate systems.
Transtormation of vector representation from one coordinate system to another will
also be described. Scalar and vector fields will then be defined, with emphasis on
understanding the concepts of electric and magnetic fields because they constitute the
basic elements of electromagnetics. Vector integration will be introduced to pave the
way for the introduction of Maxwell’s equations in integral form. Maxwell’s equations
are simply the mathematical relations that govern the relationships between the electric
and magnetic fields, and their associated charge and current distribution sources. These
relations include the following:
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1. Gauss’s law for the electric field.
2. Gauss’s law for the magnetic field.
3. Faraday’s law.

4. Ampere’s circuital law.

A brief description of the experimental evidence that led to Maxwell’s hypothesis
will also be given.

1.2 VECTOR ALGEBRA

Familiarity with some of the mathematical rules of the vector calculus certainly helps
in simplifying the development of the electromagnetic fields theory. This is simply
because the electric and magnetic fields, which are the bases of our study, are vector
quantities, the matter that makes it useful for us to start with reviewing our vector
algebra. Let us first distinguish between scalar and vector quantities.

Scalar: Is a physical quantity completely specified by a single number describing
the magnitude of the quantity (e.g., temperature, size of a class, mass,
humidity, etc.).

Vector: Is a physical quantity that can only be specified if both magnitude and
direction of the quantity are given. This class of physical quantities cannot
be described by one number only (e.g., force field, velocity of a car or a
tornado, etc.).

Graphically, a vector is represented as shown in Figure 1.1 by a straight line with an
arrowhead pointing in the direction of the vector and of length proportional to the
magnitude of the vector.

Unit Vector: A unit vector in a given direction is a vector along the described
direction with magnitude equal to unity.

In Figure 1.2, A is a vector along the x axis, and a, is a unit vector along the x
axis.

A

&, =T
A

Hence, any vector can be represented as a product of a unit vector in the direction of
the vector with the magnitude of the vector

A= |Ala,
Figure 1.1 Vector representation
by an arrow. The length of the ar-
row is proportional to the magni-
4 tude of the vector, and the direc-
2

tion of the vector is indicated by
the direction of the arrow.

1—___—_—____..*
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A
4
’/_/ Figure 1.2 A unit vector a, along

the direction of the vector A.

1.2.1 Vector Addition and Subtraction

Four possible types of vector algebraic operations exist. This includes vector additions,
subtractions, scalar, and vector products. In the following two sections, we will discuss
these operations in more detail. Let us start with the process of adding and subtracting
vector qaantities.

The displacement of a point for a certain distance along a straight line is a good
illustration of a physical vector quantity. For example, the displacement of a point from
location 1 to location 2 in Figure 1.1 represents a vector quantity where its magnitude
equals the distance between the end points 1 and 2, and the vector direction is along
the straight line connecting 1 to 2. The addition of two vectors, therefore, can be
described as the net displacement that results from two consecutive displacements. In
Figure 1.3, vector A represents the vector displacement between 1 and 2, whereas the
vector B represents the vector displacement between 2 and 3. The total displacement
between 1 and 3 is described by the vector C, which is the sum of the individual
displacements A and B. Hence,

C=A+B
Based on similar reasoning, it is fairly simple to show that
(A+B)+D=A+ (B +D)

Because the negative of a vector is defined as a vector with the same magnitude
but opposite direction, vector subtraction can be easily defined in terms of vector
addition. In other words, the subtraction of two vectors can be thought of as the
summation of one vector and the negative of the other,

A-B=A+(-B)

Z Figure 1.3 The vector addition of
A two displacements.
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Figure 1.4 Vector subtraction per-
formed as the addition of one vec-
tor to the negative of the other.

Figure 1.4 illustrates the process of vector subtraction where it is shown that a vector
—B was first obtained and then added to thie vector A to provide the resultant vector
A + (—B).

1.2.2 Vector Multiplication

The process of vector multiplication is more involved than the simple multiplication of
scalar quantities. The directions of the vectors are involved in the multiplication
process, which further complicates the procedure. Two kinds of multiplications are
commonly encountered in physical problems and hence are given special shorthand
notations. These are the scalar (dot) product and the vector (cross) product. In the
following sections, these two vector product procedures will be explained in more
detail.

Scalar (dot) product of two vectors.  The name “*scalar product” emerged from
the fact that the result of this multiplication process is a scalar quantity. To appreciate
the physical reasoning behind the scalar product of two vectors, let us assume an object
of mass m placed on a rough surface s. To move this object from location 1 to location
2, a vector force F, which makes an angle o with respect to the displacement vector
r, is applied as shown in Figure 1.5. It is required to calculate the work done in moving
m from location 1 to 2. This work W is actually equal to the component of the force
along the direction of motion multiplied by the distance between 1 and 2, hence

W = |F| cosa|r|

Figure 1.5 Explanation of the scalar product in terms of a physical prob-
lem. Force F is applied to move the mass m from location 1 to 2. The scalar
product of F and r is related to the work required to achieve this motion.
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Scalar quantities, such as the work W, which are calculated by multiplying the
magnitudes of two vectors and the cosine of the angle betweén them, are encountered
in many other physical problems, which led to identifying them by the shorthand
notation of the dot product. For example, the desired work in Figure 1.5 may be
expressed in the form W = F-r.

The scalar or dot product of two vectors A and B is therefore equal to the product
of the magnitudes of A and B, and the cosine of the angle between them. It is
represented by a dot between A and B. Thus,

A'B = |A||B| cosa = AB cosa

where «a is the angle between A and B.

The dot product operation can also be interpreted as the multiplication of the
magnitude of one vector by the scalar obtained by projecting the second vector onto
the first vector as shown in Figure 1.6.

The dot product can therefore be expressed as A'B = |A||B| cosa = |A| multiplied
by the projection of B along A (i.e., [B| cos a as shown in Figure 1.6b) = |B| multiplied
by the projection of A along B (i.e., |A| cos a as shown in Figure 1.6a). Based on this
interpretation, it may be emphasized that the dot product of two perpendicular vectors
is zero. This can be seen by simply noting that the projection of one vector along the
other that is perpendicular to it is zero. Such an observation is usually more useful than
going through the mathematical substitution and recognizing that the angle o between
the two perpendicular vectors is w/2 and that cosw/2 = 0.

The distributive property for the dot product of the sum of two vectors with a third
vector 1s:

A(B+C)=AB+ A-C

Figure 1.7 illustrates that the projection of B + C onto A is equal to the sum of the
individual projections of B and C onto A.

Vector (cross) product of two vectors. The vector or cross product of two
vectors A and B is a vector, perpendicular to A and B or equivalently perpendicular to
the plane containing A and B. The direction of the vector product is obtained by the
right-hand rule rotating the first vector A to coincide with the second vector B in the

w

o
A b A
— —
IB| cos o

{a) (b)

Figure 1.6 Dot product of two vectors.
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|
[
|
|
I
I
|
|
|
___Jl Figure 1.7 The distributive prop-
erty for the dot product.

shortest way (through the angle & of Figure 1.8a). The magnitude of the cross product
of two vectors is obtained by multiplying the magnitudes of the two individual vectors
and sine of the angle between them. Figure 1.8 shows the magnitude and direction of
vector C, which resulted from the cross product of A and B

C=AXB=ABsinaa,

Area of the parallelogram
=ABsina = |Cl

Figure 1.8 The cross product of
two vectors A and B. The magni-
tude of the resultant vector C is
IC| = |A||B| sina. The direction of
C is obtained according to the

(b) right-hand rule shown in b.
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where a. is a unit vector perpendicular to A and B and in the direction indicated by the
right-hand rule shown in Figure 1.8b.

To illustrate the importance of the cross product in physical problems, let us
consider the lever ¢ that is free to rotate around a pivot O. A force F is applied to the
lever at point a as shown in Figure 1.9. It is required to calculate the moment M of the
force F around the pivot O. From Figure 1.9, it is clear that the moment M is actually
related to the component of F perpendicular to r—that is, |F| sina. The other compo-
nent of F in the direction of r does not contribute to the rotation of the lever around
0. The magnitude of the moment [M| is therefore given by

M| = |F| sina|r|

Figure 1.9 shows that in certain physical problems parameters of interest, such as the
moment in our case, are obtained by multiplying the magnitudes of two vectors by the
sine of the angle between them. The magnitude of the moment, however, does not
provide a complete description of the amount and direction of rotation of the lever. An
indication of the direction of the moment is still required. To obtain the direction of
the moment, it may be seen from Figure 1.9 that for the indicated direction of the force
F the rotation of the lever will be in the counterclockwise direction. Therefore, if we
imagine the presence of a screw at O, it can be seen that such a screw will proceed in
the direction out of the plane of the paper as a result of the rotation. The direction to
which a screw proceeds as a result of the rotation is taken to be the direction of the
moment M. From Figure 1.9, it may be seen that such a direction is the same as that
obtained according to the right-hand rule when applied to the vectors r and F in the
sequence from r to F. Hence, a complete description of the moment M (i.e., magnitude
and direction) is given by

M=rxF

in which case the magnitude of M is obtained by multiplying the magnitudes of r and
F by the sine of the angle «, and the direction of M is indicated by the right-hand rule
from r to F as explained earlier.

Therefore, the shorthand notation of the cross product of two vectors A and B
is simply a vector with its magnitude equal to [A||B| sin a, where « is the angle between
A and B, and the direction of the resultant vector is obtained according to the right-hand
rule shown in Figure 1.8b.

F
| Flsin |
' Figure 1.9 Physical illustration of
' the cross product of two vectors.
¢ ——f—rt———— —— g The magnitude and direction of the
0 2 | Fl cos o moment M is related to the cross
a

product of the force vector F and
the distance vectorr, M = r X F.
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Another physical interpretation of the cross product can be made in terms of the
vector projections. For example, the vector C in Figure 1.8a is given by

C = |A||B| sin a a,
=AXB, =|A|B,|a.

where B | is the vector component of B perpendicular to A. This observation simply
indicates that the cross product of two vectors involves the multiplication of one vector
(e.g., A) by the component of the other perpendicular to it. Based on this observation,
it is useful to note that the cross product of two vectors that are in the same direction
(i.e., parallel vectors) is zero. This may be seen by either noting that the angle «
between two parallel vectors is zero and hence sina = 0, or by recognizing that for
parallel vectors the component of one vector perpendicular to the other is zero. The
usefulness of such observations will be clarified in later discussions.

From the right-hand rule of Figure 1.8b, it is rather straightforward to see that

BXxA=-C=-AXxXB

which means that the ordering of the vectors in the cross product is an important
consideration because the cross product does not obey a commutative law.

1.3 COORDINATE SYSTEMS

The vectors and the vector relations given in the previous sections are not defined with
respect to any particular coordinate system. Hence, all the previously indicated defini-
tions of the dot product, cross product, and so forth are presented in graphical and
general terms.

Having a certain reference system (known as the coordinate system), however,
is important to describe uniquely the position of a point in space, and the magnitude
and direction of a vector. Although several coordinate systems are available, we will
restrict our discussion to the three simplest ones—namely, the so-called Cartesian,
cylindrical, and spherical coordinate systems. Expressions for transforming a vector
representation from one coordinate system to another will be derived and the previ-
ously defined vector algebraic relations will be given in these three coordinate systems.

To start with, each of the three coordinate systems is specified in terms of three
independent variables. In the Cartesian coordinate system these independent variables
are (x,y,z), whereas for the cylindrical and spherical coordinate systems these inde-
pendent variables are (p, $, z) and (r, 6, ¢), respectively. In each coordinate system,
we also set up three mutually orthogonal reference surfaces by letting each of the
independent variables be equal to a constant. For example, in the Cartesian coordinate
system, the three reference surfaces (planes in this case) are obtained by letting x be
equal to a constant value, say x;, y be equal to a constant value Y1, and z equal to z,.
As a result, these mutually orthogonal planes will intersect at a point denoted by
(%1, ¥1,2,) as shown in Figure 1.10a. The point of intersection of the three reference
planes for which x = 0, y = 0, and z = 0 defines the origin of the coordinate system
as shown in Figure 1.10b. After establishing the three reference surfaces in each
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#¢ Z =constant = z4

21 /

= ¢constant =
X = constant &4 ¥
=X ot R
i y
x/:
{a) {b)

Figure 1.10 The Cartesian coordinate system. (a) The point (x,, y,, z,) is generated
at the intersection of x = x, plane with the y = y, and z = z, planes. (b) The origin
is the point of intersection of x = 0, y = (, and z = 0 planes. The base vectors a.,
a,, and a, are mutually orthogonal, and each is perpendicular to a reference plane.

coordinate system, we define three mutually orthogonal unit vectors, called the base
vectors. The directions of these base vectors are chosen such that each base vector is
perpendicular to a reference surface and oriented in the direction of increasing the
independent variable. For example, the base vector a, shown in Figure 1.10b is oriented
perpendicular to the x = constant plane and is in the direction of increasing x . Similarly
the base vectors a, and a, are oriented perpendicular to the y = constant and
z = constant planes, respectively. Any vector is represented in a coordinate system in
terms of its components along the base vectors of that system. For example, in the
Cartesian coordinate system, a vector A should be represented in terms of its compo-
nents A,, A,, A, along the unit (base) vectors a,, a,, and a,. These, as well as other
characteristics of the three coordinate systems, will be described in the following
sections.

1.3.1 Cartesian Coordinate System

As indicated earlier, the three independent variables in the Cartesian coordinate
system are (x, y, z), and the three base vectors are a,, a,, and a,. The location of a point
in this coordinate system is obtained by locating the point of intersection of the three
reference planes. For example, the point (x4, ¥y, z,) is the point of intersection of the
three reference planes x = x;, y = yi, and z = z;. The base vectors are mutually
orthogonal, and each points in the direction of increase of an independent variable.

To obtain expressions for elements of length, surface, and volume in the Cartesian
coordinate system, let us start from an arbitrarily located point P, of coordinates
(x,y,2z) and move to another closely placed point P, of coordinates (x + dx,y +
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4
aZ
Py
[ dx dz
dx dy ,r/
dy dz T AL
S
4
dy
Vv
X
d% = dx a, +dy a, +dz a, Figure 1.11 The elements of
as, =dy dz a,, ds, =dx dz a,, ds, =dx dy a, length, surface, and volume in the
dv =dx dy dz Cartesian coordinate system.

dy,z + dz)asshownin Figure 1.11. Thus, in moving from P, to P, we basically changed
the values of the independent variables from x to x + dx, yto y + dy, and from z to
z + dz. The element of volume, dv, generated from these incremental changes in the
independent variables is given, as shown in Figure 1.11, by

dv = dxdydz

The vector element of length, d€, between P, and P,, conversely, should be
expressed, like any other vector, in terms of its components along the three mutually
orthogonal base vectors. From Figure 1.11, it can be shown that d€ has a component,
dx, along the a, base vector, dy along the a, , and dz along the a, unit vector. Therefore,
d¢ may be expressed as

d¢ =dxa, + dya, + dza,

Regarding the elements of area, it is important to emphasize that each element
of area should be accompanied by a unit vector specifying its orientation in the
coordinate system. For example, it is not sufficient to indicate an element of area ds,
cqual to dy dz because it leaves the orientation or the direction of this element of area
unspecified. As a result, we can specify three elements of areas in the Cartesian
coordinate system as

ds, = dvdza,
ds, = dxdz a,
ds, = dxdy a,

where each element of area is specified by a unit vector perpendicular to it. Actually
the subscripts are not necessary to include in this case but are here just to emphasize
that ds, (subscript x) is an element of area in the a, direction and so on.

It should be noted that the three coordinate axes x, y, and z are oriented with
respect to each other according to the right-hand rule as shown in Figure 1.12 and that
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Figure 1.12 The coordinate axes
in the Cartesian coordinate system
are mutually orthogonal and the ro-
tation from two of them toward the
third axis follows the right-hand
rule.

the directions of the base vectors in the Cartesian coordinate system are always the same
at all points. In other words, the base vectors a,, a,, and a, do not change their directions
at various points in the coordinate system, a subject that we will fully explore when we
describe the other coordinate systems.

1.3.2 Cylindrical Coordinate System

In this coordinate system the three independent variables are p, ¢, and z. The three
reference surfaces are a cylindrical surface generated by letting p = constant = p,, and
two plane surfaces obtained from ¢ = constant = ¢; and z = constant = z;. These
three reference planes intersect at the coordinate point (p;, &1, z;). The origin of the
coordinate system is the point of the intersection of the three reference planes for which
the values of the independent variables are all equal to zero. Figure 1.13 shows the
reference surfaces in the cylindrical coordinate system.

The three base vectors a,, a,, and a, are also shown in Figure 1.13 where it is clear
that these vectors are oriented perpendicular to the reference surfaces—that is, a, is
perpendicular to the p = constant cylindrical surface, a, is perpendicular to the plane

z a
z = constant Hf

¢ = constant

a t

{p, ¢, 2)

g = constant

Figure 1.13 The cylindrical coordinate system. The three reference
planes intersect at the point (p,d, z), and the three base vectors are a,
normal to the ecylindrical surface, p = constant, a, normal to the
¢ = constant plane, and a, 1s normal to the z = constant plane.
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a a ay 5 .
4 o : . Figure 1.14 The base vectors in

the cylindrical coordinate system
e change directions at the various
a, points. The base vectors at point 1
are a,, a,,, and a, , whereas a,,,
3 a4,, and a,, are the base vectors at
point 2.

& = constant, and a, is perpendicular to the z = constant plane—and that all the base
vectors point in the direction of the increase in the independent variables. Figure 1.14
shows the directions of the base vectors at various points—that is, various values of p,
¢, and z, in the cylindrical coordinate system. From Figure 1.14, it may be seen that,
unlike the base vectors in the Cartesian coordinate system, the base vectors in the
cylindrical coordinate system do not maintain their same directions at the various
points. For example, we note that the base vectors at a point 1 along the x axis, that
is, & = 0, are related to those at a point 2 along the y axis, that is, ¢ = /2, by
a, = —ay, a, = a,, and a, = a,, where a,, a,,, and a, are the base vectors at point
1, whereas a,,, a,,, and a., are the base vectors at point 2. Therefore, it is very important
before we perform any vector operation in this coordinate system, such as addition of
two vectors, that we make sure that the vectors are expressed with respect to the same
base vectors at a specific point. This particular point will be further clarified in the
section on the vector representation in the various coordinate systems.

For now, let us focus our attention on generating elements of length, surface, and
volume in the cylindrical coordinate system. To generate an element of volume in the
cylindrical coordinate system, we make incremental changes in the independent vari-
ables from p, &, and z to p + dp, ¢ + dd, and z + dz. This results in generating an
element of volume dv as shown in Figure 1.15. Before we can calculate the volume of
dv, however, it should be noted that the incremental changes in the independent
variables dp and dz are actually changes in elements of length, whereas the incremental
change d¢ is just a change in angle and not in length. To transform the incremental
change in ¢ to a change in element of length, dd must be multiplied by p and the
corresponding change in the linear dimension will be d€, = pd¢ a, as shown in Figure
1.15. In other words, we multiplied d¢ by p, which is called the metric coefficient to
transform the change in the angle d¢ to change in the linear dimension d€,. With this
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Ty

Figure 1.15 The elements of

length, volume, and surface in the

cylindrical coordinate system. d¢ is
d2=dpa, + pdd a, +dz a, not a length and should be multi-
ds, = pd¢ dz a,, ds, =dp dz a, phied by its metric coefficient p to
ds, = pd¢ dp a, have the dimension of length.
dv = p dp d¢ dz sodby, = pdda,.

in mind, it is easy to show that the element of volume dv, which resulted from
incremental changes in the independent variables, is given by

dv = dp(pdd)dz = pdpdd dz
The resultant element of length d€ from P, to P, is given by
df = dpa, + pdday + dza,

whereas the resultant elements of area that are associated with unit vectors perpendic-
ular to each of the areas to emphasize their orientations are given by

ds, = pdddz a,
dsy, = dpdz a,
ds, = pdpdda,

1.3.3 Spherical Coordinate System

In this coordinate system the three independent variables are (r, 6, ) as shown in
Figure 1.16a. The three reference surfaces are: spherical surface obtained by letting the
independent variable r = constant, conical surface obtained for 6 = constant value,
and a plane surface obtained for & = constant value. These three reference surfaces
intersect at the coordinate point P (r, 8, ¢) as shown in Figure 1.16b. The three base
vectors a,, ay, and a, are perpendicular to the spherical, conical, and the plane reference
surfaces, respectively. These three base vectors are clearly mutually orthogonal, and
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¢ = constant

z ! = constant

r = constant

(a) {b)

Figure 1.16 'The spherical coordinate system. (a) The three independent variables
(r,9,¢) at point P. (b) The three reference surfaces are the spherical surface
r = constant, the conical surface 6 = constant, and the plane ¢ = constant. The
three base vectors a,, a., and a, are mutually orthogonal and follow the right-hand
rule.

they point in the directions of the increase of the independent variables. The orientation
of the base vectors is in accordance to the right-hand rule as also shown in Figure 1.16b.
The differential elements of volume, surface, and length are routinely generated by
incrementally changing the independent variables from #, 0, and b tor + dr, 6 + d6,
and ¢ + dd as shown in Figure 1.17. Expressions for the differential elements are
obtained by noting that the incremental changes in the independent variables 6 and
d¢ are not actual changes in elements of length, but instead are just changes in angles.
To transform the change 46 into a change in a differential element of length, d6 must
be multiplied by the metric coefficient which is, in this case, r. In other words, the
incremental element of length d¢, which is associated with the change of the angle 6
by d0 is d€y, = rd, whereas the element d¢, associated with the change of the angle
& by do is given by df, = r sin6d¢. From Figure 1.17, it is clear that the metric
coefficient r sin 0 is basically the projection of r in the x-y plane where the incremental
change in the angle ¢ occurs. d¥¢, is therefore obtained from the relation

d€, = projection of r in the x-y plane X ddé
=rsinfdd
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i Y

4 Figure 1.17 The elements of
\/ <\ I h length, surface, and volume in the
sl - Aty spherical coordinate system.

Based on the preceding discussion and from Figure 1.17, it is fairly straightfor-
ward to show that the incremental element of volume dv is given by

dv = dr(rd®)(r sinbdd)
= sinbdrdodd
The element of length d€ from P, to P 1s
d€ = dra, + déya, + d€ya,
=dra, + rdfa, + rsinbdda,

Il

The various eiements of area are given by
ds, = r’sinfdbdda,
dsy = r sintdrdda,
ds, = rdrdfa,

Il

Clearly each element of area is associated with a unit vector perpendicular to it. In
Figure 1.17, the unit vector a, of the element of area ds, is indicated.

A summary of the base vectors in the Cartesian, cylindrical, and the spherical
coordinate systems is given in Figure 1.18. It should be noted that the base vectors in
the spherical coordinate system are similar to those in the cylindrical coordinates
insofar as they change their directions at various points in the coordinate system.
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Z4t 24 A |
r |i a,
87 1
a, |
a, |
— |
a}c’ Fal :: | :‘
/ y y S | y
¢ \P ], ¢ N
s
X X 8y X
a.ﬂ
Cartesian Cylindrical Spherical

Figure 1.18 The base vectors of the three most commonly used coordinate systems.

1.4 VECTOR REPRESENTATION IN THE VARIOUS COORDINATE
SYSTEMS

A vector quantity is completely specified in any coordinate system if the origin of the
vector and its components (projections) in the directions of the three base vectors are
known. For example, components of a vector A are designated by A,,A,, A, in the
Cartesian coordinate system, by A,, A,, A, in the cylindrical coordinate system, and by
A,, Ay, A, in the spherical coordinate system. The vector A may then be represented
in terms of its components as:

A=A,a + A a, + A,a, (Cartesian system)
A=A,a, + Aya, + A, a, (Cylindrical system)
A =A,a, + Aya, + A,a, (Spherical system)

Let us now consider two vectors A and B that have origins at the same point in
any one of these coordinate systems. It is important to note that the unit vectors are
directed in the same directions at all points only in the Cartesian coordinate system.
We illustrated in the previous sections that in the cylindrical and the spherical coordi-
nate systems the unit vectors generally have different directions at different points.
Therefore, in all the vector operations that we will describe in this section, it will be
assumed that either the vectors are originating from the same point in the coordinate
system and are thus expressed in terms of the same base vectors, or that the vectors
are originating at different points and their components are all expressed in terms of
a single set of the base vectors at either one of the two origins of the two vectors. What
is important here is that the two vectors are expressed in terms of their components
along the same base vectors. Let us now consider two vectors, A and B, expressed in
terms of the same base vector, u,, w,, and u,.
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A= A]lll + Az“z +A3“3
B= Blul + lelz =k B3u3

where u;, uw,, and u; stand for any set of three unit vectors (a,, a,, a,), (a,, ay,a,), or
(a,,ay,a,). The vector’s addition or subtraction is given by

AxB=(A % B)u + (A % B)u, + (A; £ By)u,
Also, because the three base vectors are mutually orthogonal, therefore

Ut = W'y = W'y = 0
and

g = Uy = i3l = 1

The unity value in the dot product is indicated because the magnitudes of these base
vectors are unity by definition. The dot product of two vectors with origins at the same
poinis 18, therefore,

AB= (A1u1 -t Az“g b Ag ll3)‘(B] u; + Bzug =+ Bgug)
= Al Bl + Ang + A:;B:.;

Furthermore, because the unit vectors are mutually orthogonal, we have the following
relations for the cross products

u; X U = us, u X Uz = uy, Uy X U = Uy
and
WXy = Xwm=uwmXu=0
The cross product of two A and B vectors may then be expressed in the form
AXB=(Au+ A4m+ Am) X (Biu, + Byuy + Byug)
=w(A; By — A3 By) + wy(A3 B, — A, By) + ws(A, B, — A, B))

which can be written in the form of a determinant:

uw U U
AXB= Al Ag A:;
B, B; B;

which is an easier form to remember.

EXAMPLE 1.1

. A A A A B Y ¥

Which of the following sets of independent variables (coordinates) define a point in a
coordinate system?

L. x=2,y=-4,z=0.
2.p=—-4,b=02z=—1.
o = 3,0 =00 =1,
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Solution

Only the point in (a), because p in (b) and 8 in (c) have to be positive, that is, p = 0 and
0 = 6 = m, which they are not.

48

EXAMPLE 1.2

Find a unit vector normal to the plane containing the following two vectors:
OA = 4a, + 10a,
OB = 4a, + Sa,

Solution
The cross product of two vectors OA and OB 1s a vector quantity whose magnitude is equal

to the product of the magnitudes of OA and OB and the sine of the angle between them,
and whose direction is perpendicular to the plane containing the two vectors. Hence,

a, a, az%
OAxXOB=|4 10 U! = 50a, — 20a, — 40 a,
4 0 5|

The required unit vector is obtained by dividing OA X OB by its magnitude; hence,
50a, — 20a, — 40a, 5a, — 2a, — 4a,

I = [50a, — 208, — 408,] Vo5 147 16
1
=——7 (58, — 2a, —da,)
3V5 4
P

EXAMPLE 1.3

Show that vectors A = a, + 4a, + 3a. and B = 2a. + a, — 2a. are perpendicular to each
other.

Solution

The dot product consists of multiplying the magnitude of one vector by the projection of
the second along the direction of the first. The dot product of two perpendicular vectors
is therefore zero. For the two vectors given in this example,

AB=2+4-6=0

so that A and B are perpendicular.
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EXAMPLE 1.4

The two vectors A and B are given by
A=a,+ ma, + 3a;
B =oqaa, + Ba, — 6a,

Determine o and B such that the two vectors are parallel.
Solution

For these two vectors to be parallel the cross product of A and B should be zero, that is,

AxB=20
a, a, a,
=11 =« 3
a B -6

0= a,(—6m = 3p) + 2,(3a + 6) + 2.(B — ma)

For the vector that resulted from the cross product to be zero, each one of its components
should be independently zero. Hence,

—b6w — 3p =0, LPB= 2w
and
30 +6=0, Tep, =

These two values of « and B clearly satisfy the remaining relation B — wa = 0. The vector
B is therefore given by

B=-2a,-2wa, — 6a,

4‘.”_._.
1.5 VECTOR COORDINATE TRANSFORMATION

The vector coordinate transformation 1s basically a process in which we change a vector
representation from one coordinate system to another. This procedure is similar to
scalar coordinate transformation with the additional necessity of transforming the
individual components of the vector from being along the base vectors of the first
coordinate system to components along the base vectors of the other coordinate system.
Therefore, the transformation of a vector representation from one coordinate system
to another involves a two-step process which includes the following:

a. Changing the independent variables (e.g., expressing x, y, and z of the rectangular
coordinate system in terms of p, ¢, and z of the cylindrical coordinate system or
r, 8, & of the spherical coordinate system).

b. Changing the components of the vector from those along the unit vectors of one
coordinate system to those along the unit vectors of the other (e.g., changing the
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components from those along a,, a,, and a, in the Cartesian coordinate system
to components along a,, a,, and a, in the cylindrical coordinate system).

In the following sections we shall describe specific transformation of the indepen-
dent variables and the vector components from one coordinate system to another.
1.5.1 Cartesian-to-Cylindrical Transformation

The relation between the independent variables of these two coordinate systems is
shown in Figure 1.19a. From Figure 1.19a it may be seen that

x = pcosd p="Vx*+y
y =psing ¢ = tan '(yix)
z = z (the same in both coordinates)

- Figure 1.19a Relation between the
g gt independent variables in the Carte-
sian and cylindrical coordinate sys-
(a) tems.

"'ﬁ‘r

Figure 1.19b The relation between

the vector components in the

rectangular and cylindrical coordi-
(b} nate systems.
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To illustrate the process of changing the components of a vector from being along the
base vectors of one coordinate system (e.g., the Cartesian) to the other components
along the base vectors of the other coordinate system (e.g., the cylindrical), let us solve
the following example.

EXAMPLE 1.5

Transform the vector A given in the Cartesian coordinate system by

A = A). a;\.‘ = A_!-a_p + Aza{.
to the form
A=A,a, +Aya, + A a,

in the cylindrical coordinate system.
Solution

In transforming the vector A from the Cartesian coordinate system to the cylindrical one,
itis required to obtain the components A, A, and A, of the vector A along the base vectors
a,, a4, and a; in the cylindrical coordinate systems. From the definition of the dot product,
the component of A along a, is given by

A= Aa, = (A:a, + Ayja, +A.9,) a,
=Ac8, a2, + 4,88, + A4, a,

a,-a, from Figure 1.19b is equal to cos ¢ because the magnitudes of both a, and a, are both
equal to unity and the angle between them is . Similarly, a,-a, = cos(w/2 — ¢) = sin ¢,
and a.-a, = 0. A, is therefore given by

A, = A, cosdh + A, sind

which is the same result previously obtained using the projections of the vector compo-
nents. Similarly, the A, component may be obtained by

Aq, = A'aq, = Ax a, Ay + AJ} a,-a,, + Az L P PN

—A, sind + A, cosd

The negative sign of the A, component is included because the component A, sin¢ is not
along the positive a, direction but instead along the negative a,, direction. Alternatively,
the negative sign may be considered as a result of the fact that the angle between a, and
a, is (w/2 + ). The dot product a,-a, requires calculation of the cosine of the angle
between them and cos(w/2 + ¢) = —sind.

The A. component of the vector will, of course, remain unchanged between the
Cartesian and cylindrical coordinate systems.

+e

1.5.2 Cartesian-to-Spherical Transformation

The relations between the independent variables can be obtained from Figure 1.20. It
should be noted that r, in Figure 1.20 is simply the projection of r in the x-y plane and
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¢ ~ | P Figure 1.20 Relation between the
B 1 independent variables in the spheri-
———————————— =l cal and Cartesian coordinate sys-

tems.

hence is given by r; = r sin 8. Once again, to illustrate expressing the vector compo-
nents from one coordinate system to another, we will solve the following example.

EXAMPLE 1.6

Derive the vector components transformation from the Cartesian to the spherical coordi-
nate systems and vice versa.

x = rcosd rF= Va4 2t
rsinfcosd & = tan"!(y/x)

y =r;sind g =tan"'"V{x* + y*)z

rsinb sind

il
1

z =rcost

Solution

The problem can be alternatively stated by considering the vector A, which is given in the
Cartesian coordinate system A = A,a, + A,a, + A, a., and it is required to find the
vector components A,, Ay, and A, along the a,, ay, and a, unit vectors in the spherical
coordinate system. The relationship between the vector components is illustrated in Fig-
ure 1.21.

From Figure 1.21, it may be seen that the projections of the components A., A,, and
A, along the direction a, are given, respectively, by cos¢ siné, sind sinf, and cos 6.
Therefore, the radial component A, of the vector A is given by

A, = A, cosdsind + A, sind sin® + A, cosb (1.1)

Following a similar procedure, we next find the projections of A., A,, and A. in the
directions of a, and a,. These are given, respectively, by (cos & cos 8, sin¢ cos9, —sin6)
along the a, direction, and (—sin ¢, cosd) along the a, direction. Hence,
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Figure 1.21 Transformation of the vector components from the Cartesian to the
spherical coordinate system.
Ay = A, cosd cosh + A, sind cosh — A, sind (1.2)
Ay = —A,sind + A, cos (1.3)
and the vector A expressed in the spherical coordinates system is given by
A=A a + Agay, + Aga,

where the components A,, A,, and A, are given in equations 1.1 to 1.3.
To find the inverse transformation, we simply start with the vector A given in the
spherical coordinate system by

A=A, a + Aga, + Aq.aq.

and then find the components of A., A4, and A, along the unit vectors a,, a,, and a, of
the Cartesian coordinate system. Alternatively, we can just solve the set of equations 1.1
to 1.3 simultaneously for A,, A,, and A,. The result in both cases is

A, = A, sinb cosd + Ay cosl cosdh — A, singd (1.4)
A, =A,sinBsind + Ay cosf sind + A, cosd (1.5)

and
A, = A, co88 — Ay sin b (1.6)

Clearly, the vector A in the Cartesian coordinate system is given in terms of its components
A, A,, and A, given in equations 1.4 to 1.6.

+e

Alternative Procedure. In the previous sections we described a process for
making the vector coordinate transformation by dealing with each of the vector com-
ponents in the “new” coordinate system and deriving expressions for the contributions
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of the vector components in the “old” coordinate system along the direction of the
vector component of interest. In other words, the transformation basically involves
finding the projections of the already available vector components along the various
base vectors of the desired new coordinate system. In the following, we present an
alternative procedure for finding the vector components along the desired base vectors.
This can simply be achieved by taking the dot product of the vector by a unit vector
along the desired direction. For example, in transforming the vector A given by

A=A +A,a +Aa,

to the spherical coordinate system, let us obtain A,, A;, and A, from known values A4,,
A,, and A, by performing the following dot products:

A= Aa, =A;aa +4,a,a + A aa

From Figure 1.21, a,-a, = cos¢ siné, a,-a, = sind sinf, and a,-a, = cos 0. Hence, A,
is given by

A, = A, cosd sing + A; sind sinh + A, cosb

which is the same result we obtained in the previous section. Similarly, it can be shown
that

Ay = Aa, = A aca+ Ayacay + A a,-a

Once again from Figure 1.21, it is quite clear that a,-a, = cos¢ cos@, a,-a, =
sin¢ cos0, and a,-a, = —sin 8. Hence,

Ay = A, cosd cosd + A, sind cosB — A, sinb
EXAMPLE 1.7

Express the vector
A =zcosba, + p’sinda, + 16pa,

in the Cartesian coordinates.

Solution

We first change the independent variables from p, ¢, and z in the cylindrical coordinate
system to x, y, and z in the Cartesian coordinate system. These changes are previously
indicated as

: X . ¥
p=Vx*+y? Cos h = ———— | singp = ——=——
‘\,-"IQ + }’2 '\.-'xz 4e }_,2

Next we use the vector component transformation between the two coordinate systems.
From the relations given in example 1.5, we obtain

A, =A,cosdp — Ay sing
zx*

2 P 2
Z COos 3 511 = 5
AR L e

Il
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A, = A, sind + A, cosd

zZXy
Xt + y?'

=z sind cosd + p’sind cosp = + xy

A, =16p = 16V x* +y*
and, in vector notation, the vector A is given by:

2
A=( il —yz)ax+( xyzz+xy)a,,+(16\fx2+yz)a;

x2+_}’2 x2+y

—

EXAMPLE 1.8

ErRareen. i s

A vector B lies in the x-y plane, and is given by
B=3xa, + ya,

1. Obtain an expression for B in cylindrical coordinates.
2. Determine the magnitude and direction of B at the point x = 3,y = 4.

Solution

1. Using the coordinate transformation
X = pcosd, ¥y =psind
and the vector transformation given in example 1.5, we obtain
B, = B, cosd + B, sind = x cosd + y sind
=pcosd + psin’d =p
By = —B. sind + B, cosd
= —psind cosdp + psind cosd =0
B, =0
and, in vector notation,

B =rpa,

2. At the point x = 3,y = 4, the radial distance is
p= x2 -+ yz = 5

Hence,
B=5a,

—_




26 Vector Analysis and Maxwell’s Equations in Integral Form Chap. 1

EXAMPLE 1.9

2
= S . :
Express the vector A = — a, in the spherical coordinate system.
¥

Solution
Because the vector A has only an A, component, its component A, along the base vectors
a, in the spherical coordinate system is given by

A, = A, cosd sinb

T (r sin® cos )’ r cos 9
A, =—— cosd sinh = ; .
¥ oSy rsinf sind

cosd sinf

B 3
_ 281078 cos 8 cos” ¢
sind

Similarly, the A, and A, components are given by

2

Ag = A, cosd cosh = etk cosd cosh

_ (r* sin®0 cos’ d)(r cosB) cos cos
rsinf sin g

,5in B cos® 8 cos® ¢
sind

(" sin* 0 cos® d)(r cos0) i

A() — A, = 1 —_ < =
: A Sl r sin sin ¢

nd

= —r* sin 6 cos 0 cos’

[t is rather surprising to see that a simple vector such as A that has only one A, component
in the Cartesian coordinate system actually has three components of complicated expres-
sions in the spherical coordinate system

A=A.a + Aga, + Aga,

This problem emphasizes the importance of choosing the right coordinate system that best
fits the representation of a given vector.

Al

1.6 ELECTRIC AND MAGNETIC FIELDS

Basic to our study of electromagnetics is an understanding of the concept of electric
and magnetic fields. Before studying electromagnetic fields, however, we must first
define what is meant by a field. A field is associated with a region in space, and we say
that a field exists in the region if there is a physical phenomenon associated with points
in that region. In other words, we can talk of the field of any physical quantity as being
a description of how the quantity varies from one point to another in the region of the
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field. For example, we are familiar with the earth’s gravitational field; we do not “see”
the field, but we know of its existence in the sense that objects of given mass are acted
on by the gravitational force of the earth.

1.6.1 Coulomb’s Law and Electric Field Intensity

We are all familiar with Newton’s law of universal gravitation, which states that every
object of mass m in the universe attracts every other object m' with a force that is
directly proportional to the product of the masses and inversely proportional to the
square of the distance R between them—that is,

mm'

R 2

F=G

where G is the gravitational constant and a is a unit vector along the straight line joining
the two masses. The equation above simply means that there is a gravitational force
of attraction between bodies of given masses and that this force is along the line joining
the two masses. In a similar manner, a force field known as the electric field is associated
with bodies that are charged.

In the experiments conducted by Coulomb, he showed that for two charged bodies
that are very small in size compared with their separation—so that they may be
considered as point charges—the following hold:

1. The magnitude of the force is proportional to the product of the magnitudes of
the charges.

2. The magnitude of the force is inversely proportional to the square of the distance
between the charges.

3. The direction of the force is along the line joining the charges.
4. The magnitude of the force depends on the medium.
5. Like charges repel; unlike charges attract.

Hence, if we consider two point charges O, and O, separated by a distance R, the
force is then given by:

F:kQIQE

where k is a proportionality constant and ay, is a unit vector along the line joining the
two charges as indicated by the third observation in the experiment by Coulomb., If the
international system of units (SI system) is used, then Q is measured in coulombs (C),
R in meters (m), and the force should be in newtons (N) (see Appendix B). In this case,
the constant of proportionality k& will be

1
b= dre,
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where €, is called the permittivity of air (vacuum) and has a value measured in farads
per meter (F/m),
¢ = 8.854 X 1072 ~ —— x 10 F/m
36w
The direction of the force in the above equation should actually be defined in
terms of two forces I, and F, experienced by (; and Q,, respectively. These two forces
with their appropriate directions are given by

L _ OO,
b= dme, R* Azt
s QIQZ
e 41re, R? A2

where a,, and aj, are unit vectors along the line joining Q; and Q, as shown in Figure
1.22.

Electric Field Intensity. From Coulomb’s law, if we let one of the two charges,
say (J,, be a small test charge g, we have

_ Qg
5= dare, R? Az

The electric field intensity E, at the location of the test charge owing to the point charge
0, is defined as

.
Fa q “4'11'60R3 A1z

In general, the electric field intensity E is defined as the vector force on a unit positive
test charge.

A0 InEl
dmre, R2 OF

Q4 Figure 1.22 The electric force be-

/ tween two point charges 0, and
F'I Q2°
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Figure 1.23 Direction lines and
constant-magnitude surfaces of
electric field owing to a point
charge.

where ag is a unit vector along the line joining the point charge Q and the test point
wherever it is (the test point in this case is the point at which the value of the electric
field intensity E is desired). The electric field intensity owing to a positive point charge
is thus directed everywhere radially away from the point charge, and its constant
magnitude surfaces are spherical surfaces centered at the point charge as shown in
Figure 1.23.

If we have N point charges Q,, 0, ..., Qy as shown in Figure 1.24, the force
experienced by a test charger ¢ placed at a point P is the vector sum of the forces
experienced by the test charge owing to the individual charges, that is,

N
e St G
o 2’1 4e, R} "
[
and
F =gE

Figure 1.24 The total electric field
intensity at point P owing to N
point charges equals the vector sum
of the electric field intensities ow-
ing to all of the charges.
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EXAMPLE 1.10

S

A point charge Q = 107° C is located at (—0.5, =1, 2) in air.
1. What is the magnitude of the electric field intensity at a distance of 1 m from the
charge?
2. Find the electric field E at the point (0.9, 1.2, —2.4).

Solution

1. The electric field intensity is given by

" dme, B2
which is in the radial direction, and its magnitude |E| at R = 1 m is given by
-9
E| = RS PR 9 N/C
4r=—% 1072
" 36m

2. A diagram illustrating the locations of the charge and the test point is shown in Fig-
ure 1.25. E at (0.9,1.2, -2.4) is

4me,(QT)* ¢

QT = OT — 0Q
=09 = (=0.5))as+ (1.2—=(-1))a, + (-2.4— (2D =
= 1l.4a, + 2.2a, — 4.4a,

it

<Y

Figure 1.25 A diagram illustrating
the location of a point charge Q
and the coordinates of the point T
est point at which the electric field 1s re-
quired.
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S l4a, + 2.2a, —4.4a,

e

N (LR + 22 + (44)
= 0.274a, + 0.43a, — 0.86a,

|QT| = QT = V26.16
_.9
E = 1 L aor
LB -9
41T361T x 1077 x 26.16
= 0.094a, + 0.148a, — 0.296a, N/C

ol
1.6.2 Flux Representation of Vector Field

As indicated in earlier sections, a vector quantity is completely specified in terms of
its magnitude and direction. Therefore, the variation of a vector field in space can be
graphically illustrated by drawing different vectors at various points in the field region
as shown in Figure 1.26a. The magnitudes and the directions of these vectors represent
the different values of the field (magnitude and direction) at the various points in space.
Although the graphical representation in Figure 1.26a is possible and correct, it is a
rather poor illustration and might get confusing for fields with rapid spatial variation.
A widely adopted graphical representation of vector fields is in terms of their flux lines.
In this procedure, a vector field is represented by arrows of the same length but of
different separation between them. The direction of these arrows (flux lines) is in the
direction of the vector field (or tangential to it). The magnitude of the field in this case,
however, is not described in terms of the length of the arrow but instead in terms of
the distance between the flux lines. The closer together the flux lines are, the larger
the magnitude of the field and a further separation between these flux lines simply
indicates a decrease in the magnitude of the field. Flux representations of uniform (of
the same magnitude) and nonuniform fields are shown in Figures 1.26b and 1.26c,
respectively.

It should be emphasized that the reason for our desire to develop such graphical
representation is simply to help us visualize the quantitative properties of an existing
field. For example, if we reexamine our previous representation of the electric field
shown in Figure 1.26d which is due to a point charge (J, we can clearly see that this
field is radially directed away from the point charge (as expected from Coulomb’s law)
and that the magnitude of this field is decreasing (as judged from the increase in the
separation distance between the lines) with the increase in the distance away from the
charge. This is also true according to Coulomb’s law. From Figure 1.26d, it is also clear
that the magnitude of the electric field is constant (equal distance between flux lines)
at a fixed distance from the point charge.

For a more accurate description of the flux representation of electric fields, let
us define a vector quantity D known as the electric flux density . D has the same direction
as E, the electric field intensity, and its magnitude is D = ¢, E. From Coulomb’s law,
€, E has the dimension of charge/area. Based on Gauss’s law, which we will describe
in later sections, the number of the flux lines emanating from a charge + Q is equal
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Poor representation Flux representation Flux representation
of vector field of uniform field of nonuniform field
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(d)
Map of flux lines
around the electric charge Q

Figure 1.26 Various graphical representations of fields.

to the value of the charge in the SI system of units. Hence, if € is the total number of
flux lines

€inesy — (C) 1n the SI system of units
The vector D is therefore equal to

__charge 0 &
area area

= electric flux density

Hence, D is an important parameter in our graphical representation of the field simply
because it indicates the number of the flux lines per unit area. This flux representation
of a vector field will be further used in future discussions.
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EXAMPLE 1.11

Use the flux representation to illustrate graphically the following vector fields:

1. A= Ka,
2. B= Kxa,
3. C=Kxa,
K
4. D = F ap
5. F=Ka,
Solution

Before we start graphically representing the given vector fields, let us review the basic rules
of the flux representation of a vector field.

1. The direction of the flux lines is in the direction of the vector field or tangential to

2,

1t.

The distance between the flux lines is inversely proportional to the magnitude of the
vector field. In other words, the larger the magnitude of the vector field, the smaller
the distance between the flux lines will be. With these basic rules in mind, let us now
make the desired flux representations.

(a)

(b)

(c)

(d)

(e)

A = Ka, is an x-directed vector with uniform (equal) magnitude everywhere in
the Cartesian coordinate system simply because it is independent of the x, v, z
variables. A flux representation of the vector A is given in Figure 1.27a.
Vector B is in the y direction, and more important is that the magnitude of the
vector increases with the increase of x. Vector B, therefore, is not uniform and
its magnitude increases with the increase in x. The flux lines representing this
vector are hence drawn closer as the magnitude of the vector increases with the
increase in x. Furthermore, the vector will be directed in the negative y direction
for negative values of x. A flux representation of B is given in Figure 1.27b.
In this case, the vector C is also directed in the a, direction for positive values
of x and in the —a, direction for negative values of x. Furthermore, the magni-
tude of the vector increases with the increase in x. This increase in the magnitude
of vector C is represented graphically in Figure 1.27¢ by decreasing the distance
between the flux lines, or in other words, by increasing the number of flux lines
with the increase in x.

Vector field D is best graphically illustrated in the cylindrical coordinate system.
It is an a, directed vector, and its magnitude decreases with the increase in p.
Figure 1.27d illustrates the flux representation of such a vector where it is clear
that just by drawing the a, directed flux lines, the distance between these lines
increases with the increase in p, thus demonstrating the decrease in the magni-
tude of the vector D with the increase in p.

The flux representation of the vector F is also made in the cylindrical coordinate
system because F is simply in the a, direction. To illustrate the uniform magni-
tude of the vector F, however, the distance between the flux lines should be
mamntained constant. This is achieved graphically by drawing more and more flux
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c) C=Kxa,

Figure 1.27 Flux representation of various vectors.

lines with the increase in p, as shown in Figure 1.27¢, so as to maintain the density
of the flux lines (i.e., number of flux lines per unit area) almost constant
throughout Figure 1.27e.

——
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1.6.3 Magnetic Field

The concept of a field should be familiar by now. Fields really possess no physical basis,
because the physical measurements must always be in terms of the forces that result
from these fields. As an example of these fields, we discussed in detail the electric field
E and the forces associated with static electric charges. Another type of force is the
magnetic force that may be produced by the steady magnetic field of a permanent
magnet, an electric field changing with time, or a direct current. We might all be familiar
with the magnetic field produced by a permanent magnet that can be recognized
through its force of attraction on iron file placed in the neighborhood of the magnet.
This phenomenon has been recognized and reported throughout history. It was only
in 1820, however, that Oersted discovered that a magnet placed near a current-carrying
wire will align itself perpendicular to the wire. This simply means that the steady electric
currents exert forces on permanent magnets similar to those exerted by permanent
magnets on each other. Ampere then showed that electric currents also exert forces on
each other, and that a magnet can be replaced by an equivalent current with the same
result. Biot and Savart quantified Ampere’s observations, and in the following section
we will discuss their findings. Before going to the next section, however, it is worth
mentioning that the magnetic field produced by time-varying electric fields is just a
mathematical discovery made by Maxwell through his attempt to unify the laws of
electromagnetism available at that time. The hypothesis introduced by Maxwell postu-
lating that time-varying electric fields produce magnetic fields will be discussed in detail
later in this chapter. In this section we will focus our discussion on the production of
magnetic fields by current-carrying conductors. The fundamental law in this study is
Biot-Savart’s law, which quantifies the magnetic flux density produced by a differential
current element.

Biot-Savart’s Law. The Biot-Savart law quantifies the magnetic flux density 4B
produced by a differential current element Id¢. The experimental law was introduced
to describe the force on a small magnet owing to the magnetic flux produced from a
long conductor carrying current I. If each of the poles of a small magnet has a strength
m, the force F caused by the flux B is given by

F=mB

This force law is clearly analogous to Coulomb’s law for electrostatic field. In this case,
the electric force is equal to the charge O multiplied by the electric field intensity E.
Hence, F = QE.

To quantify the experimental observations by Biot and Savart, the force dF owing
to the magnetic flux dB produced by a differential current element Id#, as shown in
Figure 1.28, is found to have the following characteristics.

1. Itis proportional to the product of the current, the magnitude of the differential
length, and the sine of the angle between the current element and the line
connecting the current element to the observation point P.

2. Itis inversely proportional to the square of the distance from the current element
to the point P.
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Figure 1.28 The magnetic field in-
tensity at a point P owing to a cur-
rent element Id¥€. ag is a unit vec-
tor between the element and the
observation point P.

3. The direction of the force is normal to the plane containing the differential current

element and a unit vector from the current element to the observation point P.
It also follows the right-hand rule from Id¢ to the line from the filament to P.
Hence,

mu, I df sin o
dq r

Because the direction of the force dF is perpendicular to Id¢ and ag, a compact
expression of the force may take the form

\dF| = |mdB| =

Id¢ X ag

dF = mdB = mp., 4 R
v

where p,/4 is the constant of proportionality.

The following examples will illustrate the use of Biot-Savart’s law in calculating

magnetic fields from current carrying conductors.

EXAMPLE 1.12

Let us use Biot-Savart’s law to find the magnetic flux density produced by a single turn
loop carrying a current I. We will limit the calculation to the magnetic field along the axis
of the loop.

Solution

The magnetic field resulting from the current element 1 (Id€,), which is located at an angle
¢ in Figure 1.29 is given according to Biot-Savart’s law by

i, = Me1d€ X ar _ poldfay X ap
: 4mR> 4 (a’ + 7)

Atthe element 2, which is symmetrically located with respect to element 1, that is, located
at the angle ¢ + r in Figure 1.29, the magnetic flux density is given by

old€a, X ag,

i
4B dm (a* + 2%)




Sec. 1.6 Electric and Magnetic Fields 37

X
T Element 1

Element 2

Figure 1.29 Magnetic flux density resulting from a current loop.

From Figure 1.29, it may be seen that the components of dB, and 4B, perpendicular to
the z axis cancel and the other components along the z axis, that is, |dB,| sin6 and
|dB-| sin 0, will add, hence,

o W, fadd sin O L W fadd a
 dmiat 27 dmlat £ 20 (e 2"
o la® dd

The total magnetic flux density B, is obtained by integrating dB. with respect to ¢ from
0 to 2m. Because dB. is independent of ¢, we simply multiply dB. by 27, hence,

5 Peo Ia® Tt p,o}'la2
417 (az + 22)3.'2 z(az ok 22)3«2

B.

or

_ . Mela®
B @+ o

This result indicates that the direction of the current flow and the direction of the resulting
magnetic field are according to the right-hand rule. When the fingers of the right hand are
folded in the direction of the current flow, the thumb will point to the direction of the
magnetic flux density B.

o
EXAMPLE 1.13

An infinitely long conducting wire carrying a constant current I and is oriented along the
z axis as shown in Figure 1.30. Determine the magnetic flux density at P,
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L]

Figure 1.30 The magnetic flux
density B resulting from an in-
finitely long conducting wire. The
wire is oriented along the positive z
axis.

e

Solution

Because the wire is infinitely long and due to symmetry around the wire, the resulting
magnetic field should be independent of z and &. Hence, without loss of generality, we
will place Pon the z = 0 plane. Let us consider an incremental current element /dz located
at 0, which is a distance z from the origin ©. The unit vector in the direction joining the
incremental current element to the field P is

fpp = a,c0s0 — a, sinf

v
=N e 3
For Fop

where rop = Vz* + p®. The magnetic field resulting from this current element is given

according to Biot-Savart’s law by

Moldza, X age
2
4 rop

dB =

Substituting apr and noting that a, X a, = a,, and a, X a, = 0, we obtain

o pdz

dB =
411'-"%;’

a,

The total magnetic field from the current line is obtained by integrating the contributions
from all elements along the line, hence,

B = kelp f A
th 4“ i (22 + pZ):W'Z

_ Balp z
4w p(z* + p

2)14’2

B, = 2 wim?
21mp

or
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Once again, we note that the direction of the magnetic flux lines and the direction of the
current producing it obey the right-hand rule. With the fingers of the right hand folded
in the direction of the flux lines, the thumb indicates the direction of the current flow.

.":

1.6.4 Lorentz Force Equation

Let us now determine the forces exerted by the magnetic field on charges. We learned
in previous sections that the electric field causes forces on charges that may be either
stationary or in motion. This is because any charged particle (whether in motion or not)
is capable of producing an electric field that interacts with the already existing electric
field, resulting in exerting a force on the charged particle. We do not expect an electric
field to exert forces on uncharged particles (e.g., particles of given masses) simply
because such particles do not produce electric field, and hence there will be no
interaction. Similarly, the magnetic field is capable of exerting a force only on moving
charges. This result appears logical because we are considering magnetic fields pro-
duced by moving charges (currents) and therefore may exert forces on moving charges.
The magnetic field cannot be produced from stationary charges and, hence, cannot
exert any force on stationary charges.

The force exerted on a charged particle in motion in a magnetic field of flux
density B is found experimentally to be the following:

1. Proportional to the charge Q, its velocity v, the flux density B, and to the sine
of the angle between the vectors v and B.

2. The direction of the force is perpendicular to both v and B, and is given by a unit
vector in the direction v X B. The force is, therefore, given by

F=0vxB

The force on a moving charge as a result of combined electric and magnetic fields is
obtained easily by the superposition of the separate electric and magnetic forces.
Hence,

F=0Q(E+vxB)

This equation is known as Lorentz force equation, and its solution is required in
determining the motion of a charged particle in combined electric and magnetic fields.

1.6.5 Differences in Effect of Electric and Magnetic Fields on Charged
Particles

The force exerted by the magnetic field is always perpendicular to the direction in which
the particle is moving. This force, therefore, does not change the magnitude of the
particle’s velocity because the work dW done on the particle or the energy delivered
to it by the magnetic field is always zero.

dW = F-d€ = gv X B-vdt =0
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TABLE 1.1 COMPARISON BETWEEN THE ELECTRIC AND MAGNETIC FIELDS

Electric field Magnetic field
1. Can be produced by charged parti- Can be produced by direct current that can
cles moving or stationary. be attributed to only moving charges.
2. The direction of the force exerted is The force is always perpendicular to the
along the line joining the two direction of the velocity of the particle.

charges and is, therefore, indepen-
dent of the direction of motion of
the charged particle.

3. Electric field force causes energy The work done on the charged particle is
transfer between the field and the always equal to zero. This is because the
charged particle. magnetic force is always perpendicular to

the velocity and hence cannot change the
magnitude of the particle velocity.

The magnetic field may, however, deflect the trajectory of the particle’s motion but not
change the total energy or the total velocity.

The electric field, conversely, exerts a force on the particle that is independent
of the direction in which the particle is moving. A velocity component along the
direction of the electric field can be generated. The electric field, therefore, causes an
energy transfer between the field and the particle. Some fundamental differences
between the electric and magnetic fields are summarized in Table 1.1.

To enhance our understanding of the electric and magnetic fields and the nature
of their interaction with charged particles further, let us solve the following additional
examples.

EXAMPLE 1.14

Consider a particle of mass m and charge ¢ moving in a magnetic field that is oriented in
the z direction. The magnetic flux density is given by B = B, a,. If the particle has an initial
velocity v = v a, (i.e., at t = 0), describe the motion of the particle under the influence of
the magnetic field.

Solution

From Newton’s law and Lorentz force
ma=gvxB (1.7)

where a is the particle’s acceleration. Expressing equation 1.7 in terms of its components,
we obtain

(1.8)
= Q(v_v B, — Vi Bt—, a, + 032)
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Note that although the initial velocity of the particle is in the x direction, we considered
all the velocity components in the v X B expression because the velocity of the particle
under the influence of the magnetic field is unknown and it is likely that the magnetic field
would deflect the particle’s trajectory thus generating other velocity components.

Now equating the various components of equation 1.8, we obtain

dv,

mE =gV, B, (].9&)
dv,

I s qv. B, (1.9b)
dv, i s

m— =0 (1.9¢)

From equation 1.9c¢ it is clear that by integrating with respect to time, we will obtain
v, = constant. Hence, if the particle has an initial velocity in the direction of the magnetic
field (z direction), this component of velocity will continue to be constant and unchanged
under the influence of the magnetic field. If, conversely, no component of the velocity is
initially in the z direction, that is, along the magnetic field, this component will continue
to be zero even after the interaction of the charged particle with the magnetic field.
With this in mind regarding the component of the velocity v., let us solve equations
1.9a and b for the other two components of the velocity v, and v,. Differentiating equation
1.9a once more with respect to f and substituting equation 1.9b for dv,/dt, we obtain

mdz Ve . @ Biv
dr* o
or
v R _
L2, =0 (1.10)

A solution of equation 1.10 is in the form
vy = A cosw,t + A; sinw,f (1.11)

where w, = ¢B,/m and A, and A, are two unknown constants to be determined from the
initial conditions of the velocity. Substituting v, in equation 1.9b, we obtain v, in the form

B. sinw, { COS w, I
—q (+ Al — /‘1'2 )
m W, w,,

Vy

(1.12)

= —A;sinw, ! + 4> cosw,

To determine A, and A, let us use the initial conditions of the velocity. Att = 0,v = va,,
and v, = 0, substituting these initial conditions in equations 1.11 and 1.12, we obtain
A; = 0 and A, = v. The expressions for v, and v, are therefore given by

Vi = V COS W, ! and Vy = —V Sinw, !
The particle’s total veloeity in the magnetic field is, therefore,
V=VCosw,ta, — Vsinw,ta, (1.13)

If we plot the variation of the particle’s velocity as a function of time, we can casily see
that the particle is rotating in the clockwise direction around the magnetic field as shown
in Figure 1.31.
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TABLE 1.2 VELOCITY COMPONENTS AND
DIRECTION AS A FUNCTION OF TIME

w, ! v| Direction
0 v a,
™
5 v —=a,
m ¥V iy
3
Eg . %
21 v Ay
& v Has both a, and

a, components

From Table 1.2 and by noting that
v = vVcos’ w,t + sinw,¢

i

it is clear that the magnitude of the particle’s velocity is always constant and is equal to
the initial velocity. Its components, however, vary as the particle presses around the
magnetic field vector in a circular trajectory. The angular velocity w, is called the cyclotron

frequency. The radius of the circle in which the particle travels around the magnetic field
18

This example simply emphasizes the statement made in the previous section that the
magnetic field may deflect the particle’s trajectory but not change its velocity—that is,
causes no energy transfer from or to the particle.

o
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EXAMPLE 1.15

A charge g of mass m is injected into a field region containing perpendicular electric and
magnetic fields. When the charge velocity at any point along the motion path is v = v, a,,
the observed acceleration is a = g, a, + a4, a,.

Find an E and B combination that would generate this acceleration a.

Solution

When the velocity has only one component in the x direction, the acceleration was found
to have two components.

a=a.a, +4a,a,
In the presence of both E and B fields, the force is given by
F=m(a.a +aa,)=qg(E+vXxB)

Because v has only one component in the x direction, then the magnetic field force cannot
be responsible for the x component of the force. The electric field force is therefore the
cause of the x component of the acceleration. Hence,

E:?’HHI

ay

and

ma,
G Vs

To explain further the reason for B to have only an a. component, let us assume that B
has B, and B, components. We should note that B has no B, component because E (has
only x component) and B are perpendicular to each other. Now if we assume that B has
B, and B, components, from v X B determinant, there should be an a, component of force
or consequently an a, component of acceleration.

a;

Ry By od
Ve l:l O - _vx Bz a)- s V: By az
0 B, B
Because the a. component of the acceleration is zero, B, has therefore to be zero.

o
EXAMPLE 1.16

Two small balls of masses m have a charge O each, and are suspended at a common point
by thin filaments, each of length €. Assuming that the charges are to be located approx-
imately at the centers of the balls, find the angle o between the filaments. (Assume o to
be small.) Note: Such a system can be used as a primitive device for measuring charges
and potentials and is called an electroscope.
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Figure 1.32 The electroscope.

Solution

Because the two balls are charged with similar charges, the repulsion force will cause them
to separate away from each other. The two balls will reach the equilibrium position when
the force perpendicular to each string becomes zero as shown in Figure 1.32. This is simply
because this force is responsible for swinging the balls.

From Figure 1.32, it may be seen that the equilibrium position will occur when

mg sine/2 = F, cosa/2
The electric force between the two charged balls F. is given by
2
E= ———Q'———Z
dme, (2€ sina/2)
Hence, the equilibrium equation reduces to

5 _sin’ a/2

lowe, €°mg  cosa/2

For small «, cosa/2 = 1 and sina/2 = /2. Thus,

KRR )

o 2 e, 2 mg

*

In the previous sections we familiarized ourselves with the simple rules of vector
algebra and the basic concepts of fields. In the following section we will continue our
efforts to pave the way for the introduction of Maxwell’s equations. Specifically, we will
introduce the vector integration as a prerequisite to the discussion of Maxwell’s equa-
tions in integral form.
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1.7 VECTOR INTEGRATION

Besides the vector representation of the electromagnetic field quantities and the ability
to transform such representation from one coordinate system to another, it is important
that we develop a thorough understanding of basic vector integral and differential
operations. Vector differential operations will be discussed in chapter 2 just before the
introduction of Maxwell’s equations in differential form. In preparation of the introduc-
tion of Maxwell’s equation in integral form, we introduce vector integral operations
next.

1.7.1 Line Integrals

The scalar line integral f”A £)d€ (where € is the length of the contour and ¢ and b
are the two end points along the path of integration) is defined as the limit of the sum
b 1 A(€) A as AE,— 0. A(€;) is the value of A (€) evaluated at the point €; within the
segment A€;. This simply means that in evaluating f A(¢)d€, we divide the contour of
integration ¢ into N segments, as shown in Figure 1.33, evaluate the scalar quantity
A(f;) at the center of each element, multiply A(€;) by the length of the element A€,
and add the contributions from all the segments. The sum of these contributions will
equal exactly the line integral of the scalar quantity in the limit when the lengths of these
elements Af; approach zero. Hence,

JA (€)d¢ = Lim EA(.?)M
.-lfe—rﬂ =

A simple example of this line integral is the evaluation of J; d€ where the contour c is
given by the curve shown in Figure 1.34. The element of length d¢ in this case is given
by pdd where p = 1 along the given contour c¢. Therefore,

JdE—L ol = J” dp =2

If we follow the physical reasoning behind the evaluation of the line integral of a scalar
quantity as described earlier, it can be shown that the line integral of the form ﬁd{f
is simply the length of the contour ¢. Hence, if ¢ is given by the curve shown in Figure

1.34, then
Circumference of circle
gE=
4
_2m(1) _w
4 £
A (2) g
AL, Figure 1.33 An approximate pro-

cedure for calculating a scalar line
integral.



