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1 Numerical discretization of Poisson’s and Laplace’s equations

We can solve electrostatic problems in terms of the potential by starting with Gauss’ law
and substituting in the expression for the electric field in terms of the potential,

∇ · ~D = ρ

∇ · (−ǫ∇Φ) = ρ

If we assume a constant value of ǫ, we can simplify to

∇
2Φ = −

ρ

ǫ

This is Poisson’s equation. The special case of ρ = 0 is called Laplace’s equation, and we
solve Laplace’s equation to get the potential in the space between conductors, where there
are no free charges.

In order to solve Laplace’s equation (or Poisson’s equation) numerically, we need to
convert it to a discrete form which can be processed by a computer. For simplicity, let’s
consider a two-dimensional problem (A 3-dimensional problem is analogous, just a little bit
more involved). In that case we can write, in a cartesian coordinate system

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0

We will look for a solution a two-dimensional regular cartesian grid, such that instead of
Φ(x, y) defined continuously, we have Φij defined discretely, like this

4,1 8,11,1 2,1 3,1 5,1 6,1 7,1 9,1

9,2

9,4

9,6

9,7

2,2 3,2

3,3

Where Φ is defined at the nodes. In this case it is a 9 × 7 grid, with 9 nodes along the first
(x) axis, and 7 nodes along the second (y) axis. Now we can write the derivatives in terms of
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differences. Assume the grid spacing is h, we could approximate the derivative at node 3, 3
along the x-dimension to be

(

∂Φ

∂x

)

3,3

=
Φ4,3 − Φ2,3

2h

where h is the grid spacing. This is a symmetric difference in which we use the values on
either side. We can also compute a derivative just to the left and just to the right of the
point (3, 3), like this

(

∂Φ

∂x

)

3,3 L

=
Φ3,3 − Φ2,3

h
(

∂Φ

∂x

)

3,3 R

=
Φ4,3 − Φ3,3

h

Althought these are asymmetric they are useful in compute the second derivative at the
point (3, 3), like this,

(

∂2Φ

∂x2

)

3,3

=
1

h

[

(

∂Φ

∂x

)

3,3 R

−

(

∂Φ

∂x

)

3,3 L

]

=
1

h2
[Φ4,3 + Φ2,3 − 2Φ3,3]

In the general case we get for the second derivative along the x-axis

(

∂2Φ

∂x2

)

i,j

=
1

h2
[Φi+1,j + Φi−1,j − 2Φi,j ]

and along the y-axis

(

∂2Φ

∂y2

)

i,j

=
1

h2
[Φi,j+1 + Φi,j−1 − 2Φi,j ]

Now we can write down the two-dimensional Laplace (or Poisson) equation in dicrete form

∇
2Φ =

1

h2
[Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1 − 4Φi,j] = 0

Now, solving the Laplace equation means finding Φi,j for all (i, j) points such that

1. The potential, Φ is equal to the prescribed value at boundaries (for example where we
define conductors and their potentials).

2. The potential satisifie the following relation for all (i, j)

Φi,j =
1

4
[Φi+1,j + Φi−1,j + Φi,j−1 + Φi,j+1]
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2 Solution of Laplace’s equation with relaxation

The question that remains is how we solve this problem: the potential is pre-defined at some
nodes and for the rest of the nodes it must be true that the potential is the average of the
potential of it’s four neighbors.

There are many ways of solving this problem, ranging from matrix calculations (as de-
scribed in the textbook), to sophisticated numerical techniques. Here I will describe a very
simple approach, which is not particularly fast or elegant, but which is simple to implement
and works.

Create two arrays with the same dimensions. One array, call it P , will contain the values
of the potential, and the other array, call it M , will contain a marker, 0 or 1. Initialize both
arrays to have zero values all over. Next decide what your boundary conditions are. For
example, you could decide that the edge of your simulation must have zero potential, and
that various nodes or collections of nodes also have fixed potential. Write those potentials
into the array P , and place a 1 in the same array elements in M . Now we are ready to begin
iterating. You will repeat the following procedure many times until either (1) the maximum
change in the potential from one iteration to the next is very small, or (2) you have reched
a specified maximum number of iterations.

The procedures is as follows. Loop over all the elements of the array. If M(i, j) = 0, then
change the value of the potential to be the average of the four neighbors and make note of
how much you changed it. Keep track of the largest change as you will use that to decide
when to stop the iterations.

That is it. Once you have iterated enough that the change is small you are done and you
(hopefully) have a good solution to the potential under the stated boundary conditions.

Note, that since we are averaging over the four neighbors, this will really only work if the
edge of the array is a boundary condition, otherwise we will have a situation where we will
be addressing array elements beyond the edge of the array.
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