
Solutions to Homework #2

Taylor 3.42

(A)

a = g sin (θ)

g = 9.81m
s2

, θ = 5.4◦ = 0.09425, so

a = 9.81 × sin (5.4◦)
m

s2
= 0.9232

m

s2

(many digits included because precision is still unknown)

δa2 =

(

∂a

∂θ
δθ

)2

=(g cos (θ) δθ)2

so

δa = g cos (θ) δθ

Additionally δθ = 0.1◦, so

δa = 9.81 × cos (5.4◦) ×
[

0.1◦ × π

180◦

] m

s2
= 0.0170

m

s2

The final answer is then

a = 0.923 ± 0.017
m

s2
or a = 0.92 ± 0.02

m

s2

Tip of the day: How many digits should I keep in intermediate results?

You can think of the rounding that you do when cutting off digits in an intermediate result
as a source of error. This error will be plus or minus one in the last digit that you keep. This
error will propagate through future calculations exactly like the measurement errors. You
want the error in your final result to be dominated by the uncertainty in the measurements.
To achieve that you make your roundoff errors much smaller than the measurement error.
How many digits do you keep then? Well it depends on how many expressions your values are
propagating through. If there is a long sequence of consecutive calculations and you compute
an intermediate result between each one, you need to be careful to include enough digits so
that roundoff errors do not propagate. Better safe than sorry.
(B)

We can calculate the acceleration via formula (3.33),

a =
l2

2s

(

1

t22
− 1

t21

)

We can compute the uncertainty in the acceleration by the general formula involving parial
derivatives, or we can follow the procedure listed in section 3.10. Let’s follow the procedure
in section 3.10.
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t1(s)

all ±0.001

t2(s)

all ±0.001

1

t21

1

t22

1

t22
− 1

t21
a

(cm/s2)
0.054 ± 2% 0.031 ± 3% 343 ± 14 1040 ± 62 698 ± 64 87 ± 8

0.038 ± 2.6% 0.027 ± 4% 693 ± 36 1372 ± 102 679 ± 108 85 ± 14
0.025 ± 4% 0.020 ± 5% 1600 ± 128 2500 ± 250 900 ± 281 113 ± 35

70 80 90 100 110 120 130 140 150

Accepted

Experiment 1

Experiment 2

Experiment 3

All of the uncertainty intervals for the experiments overlap with each other and with the
uncertainty interval for the accepted value. The series of experiments are therefore consistent
with a constant value for a.
Taylor 3.48

We wish to perform error calculation on

q =
x + y

x + z

If we do this as a stepwise calculation we first compute the uncertainties on

a = x + y and b = x + z

as

δa = δx and δb = δx

and then the uncertainty on q as

δq2 =q2

(

(

δa

a

)2

+

(

δb

b

)2
)

=

(

x + y

x + z

)2
(

(

δx

x + y

)2

+

(

δx

x + z

)2
)

=
δx2

(x + z)2 +
(x + y)2 δx2

(x + z)4

=δx2

[

(x + z)2 + (x + y)2
]

(x + z)4
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so that

δq = δx

√

(x + z)2 + (x + y)2

(x + z)2

With the generalized formula 3.47 we compute δq2 directly as

δq2 =

(

∂q

∂x
δx

)2

=

(

x + z − (x + y)

(x + z)2 δx

)2

=

(

z − y

(x + z)2 δx

)2

=
(z − y)2 δx2

(x + z)4

so that

δq =
|z − y|
(x + z)2 δx

(A)
x = 20 ± 1, y = 2, z = 0

q =
x + y

x + z
=

20 + 2

20 + 0
= 1.1000.....

1. Stepwise calculation

δq = 1 ×

√

(20)2 + (20 + 2)2

(20)2 = 0.074

so that q = 1.10 ± 0.07

2. Differential calculation

δq =
|0 − 2|

(20 + 0)2 × 1 = 0.005

so that q = 1.100 ± 0.005

The two methods compute uncertainties which are different by more than a factor of 10!!
(B)
x = 20 ± 1, y = −40, z = 0

q =
x + y

x + z
=

20 − 40

20 + 0
= −1

1. Stepwise calculation

δq = 1 ×

√

(20 + 0)2 + (20 − 40)2

(20 + 0)2
= 0.071

so that q = −1.00 ± 0.07
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2. Differential calculation

δq =
|0 − (−40)|
(20 + 0)2 × 1 = 0.1

so that q = −1.0 ± 0.1

In case (A) the stepwise rule overestimates the uncertainty on q. In ase (B) the stepwise
rule underestimates the uncertainty on q. The stepwise rule cannot be trusted to give an
accurate uncertainty when an uncertain quantity appears both in the numerator and in the
denominator of a fraction.
Taylor 3.49

(A)

f =
pq

p + q

δf 2 =

(

∂f

∂p
δp

)2

+

(

∂f

∂q
δq

)2

=

(

q (p + q) − pq

(p + q)2 δp

)2

+

(

p (p + q) − pq

(p + q)2 δq

)2

=
q4δp2 + p4δq2

(p + q)4

so that

δf =

√

q4δp2 + p4δq2

(p + q)2

(B)

f =
pq

p + q
=

pq 1
pq

p

pq
+ q

pq

=
1

1
q

+ 1
p

Stepwise computation. Let

a =
1

p
b =

1

q
c =

1

p
+

1

q
= a + b

Then

δa

a
=

δp

p

so that
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δa = a
δp

p
=

1

p

δp

p
=

δp

p2

Similarly

δb =
δq

q2

Then

δc =
√

δa2 + δb2 =

√

δp2

p4
+

δq2

q4

Finally

δf =f
δc

c
=

pq

p + q

√

δp2

p4 + δq2

q4

1
p

+ 1
q

=
pq

p + q

pq
√

δp2

p4 + δq2

q4

pq
(

1
p

+ 1
q

)

=p2q2

√

δp2

p4 + δq2

q4

(p + q)2 =

√

p4q4δp2

p4 + p4q4δq2

q4

(p + q)2

=

√

q4δp2 + p4δq2

(p + q)2

Taylor 3.50

q =
x + 2

x + y cos (4θ)

with x = 10 ± 2, y = 7 ± 1, and θ = 40 ± 3◦

compute δq:

δq2 =

(

∂q

∂x
δx

)2

+

(

∂q

∂y
δy

)2

+

(

∂q

∂θ
δθ

)2

=

(

y cos (4θ) − 2

(x + y cos (4θ))2 δx

)2

+

(− (x + 2) cos (4θ)

(x + y cos (4θ))2
δy

)2

+

(−4 (x + 2) y sin (4θ)

(x + y cos(4θ))2 δθ

)2

=
(y cos (4θ) − 2)2 δx2 + (x + 2)2 cos2 (4θ) δy2 + 16 (x + 2)2 y2 sin2 (4θ) δθ2

(x + y cos (4θ))4

so that

δq =

√

(y cos (4θ) − 2)2 δx2 + (x + 2)2 cos2 (4θ) δy2 + 16 (x + 2)2 y2 sin2 (4θ) δθ2

(x + y cos (4θ))2

5



Inserting (and being careful to convert degrees to radians), we get

q =
10 + 2

10 + 7 × cos
(

4 × 40
180

π
) = 3.50657...

δq = 1.82

The final value is then

q = 3.5 ± 1.8

Derive Northrop Equation 6.58

We start by writing an equation for current balance at the location marked (0) in Figure
6.25. That point is also a virtual ground. Total current flowing out of point (0) is zero,

0 = ip(t) −
V0

RF

− CF

dV0

dt

Take the laplace transform

Ip(s) =
V0(s)

RF

+ CFV ′

0(s)

=
V0(s)

RF

+ sCFV0(s)

We are given (Equation 6.49) that

IP (s)

Pi

=
sKP AΘ

sΘCT + 1

which we can insert so we get

Pi

sKP AΘ

sΘCT + 1
=

V0(s)

RF

+ sCFV0(s)

Pi

sKP AΘ

sΘCT + 1
= V0(s)

[

1

RF

+ sCF

]

V0(s) =Pi

sKP AΘ

[sΘCT + 1]
[

1
RF

+ sCF

]

=Pi

sKP AΘ
ΘCT CF

[

s + 1
ΘCT

] [

1
RF CF

+ s
]

=Pi

sKP A/CT CF
[

s + 1
ΘCT

] [

1
RF CF

+ s
]

For a step function in radiation intensity at time t = 0 with final intensity Pio, for which the
Laplace transform is
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Pi(s) =
Pio

s

the expression for V0(s) becomes

V0(s) = Pio

KP A/CTCF
[

s + 1
ΘCT

] [

1
RF CF

+ s
]

Northrop 6.2

(A)
The dark current is (using sign convention on Figure P6.2)

ID =
−Vbias

RD

=
−Vbias

ρL

A

=
−VbiasA

ρL
=

+10 × 0.001 × 0.05

2.3 × 103 × 0.5
= 0.435 µA

The current across the resistor is ID, so we have

V0(dark) = ID × 106Ω = 0.435 V

(B)
The photo current will equal the dark current when the photo resistance equals the dark
resistance, so

RD =
ρL

A
= RP =

L2

qητp (µp + µn)

hc

Piλ

or

Pi =
L2

qητp (µp + µn)

hc

λ

A

ρL

=
0.0052

1.60 × 10−19 × 0.8 × 10−4 × (0.045 + 0.15)
× 6.624 × 10−34 × 3 × 108

6.33 × 10−7

× 0.5 × 0.05

2.3 × 103 × 0.5

=1.3671 × 10−7 W = 0.13671 µW

This corresponds to a radiant intensity of

Pi

A
=

1.3671 × 10−7

0.05 × 0.5
= 5.47 µW/cm2

(C)
This is explained in Figure 6.6
Northrop 6.3

(A)
The Laplace transform of the response function of a first-order system is
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Vo(s)

Vi(s)
=

K

s + 1
τ

where τ is the response time-constant of the system. If we compare this expression to Equa-
tion 6.46 we find that

∆T (s)

Pi(s)
=

Θ

sΘCT + 1
=

1
CT

s + 1
ΘCT

Thus,

τ = ΘCT = ΘcAh = 200 × 2.34 × 106 × π ×
(

0.5 × 10−2
)2 × 25.46 × 10−6 = 0.936 s

(B)
The power to current response function is

IP (s)

Pi(s)
=

sKP AΘ

sΘCT + 1

The Laplace transform of the power is

Pi = Φi(s) = Φ0

(

1 − e−sT
)

s

so that the Laplace transform of the current is

Ip(s) =
Φ0

(

1 − e−sT
)

KP AΘ

sΘCT + 1

=
Φ0KP A

CT

[

1

s + 1
ΘCT

− e−sT

s + 1
ΘCT

]

We can inverse Laplace transform to

ip(t) =
Φ0KP A

CT

[

exp

(

− t

ΘCT

)

u (t) − exp

(

−t − T

ΘCT

)

u (t − T )

]

If we name the 1010Ω resistor in Figure P6.3 R, then we can write

vo(t) = ip(t)R =
RΦ0KP A

CT

[

exp

(

− t

ΘCT

)

u (t) − exp

(

−t − T

ΘCT

)

u (t − T )

]

8



-2 0 2 4 6 8 10
Time (seconds)

-1.0

-0.5

0.0

0.5

1.0

1.5
v o

 (
m

V
)

9


