
Solutions to Homework #5

Expand argument in first half of Northrop section 3.10.2.3

We start with Faraday’s law,

∫

l

~E · d~l = − d

dt

∫

A

~B · d ~A

The path integral proceeds in the right-hand positive direction with respect to the direction
of ~A around the edge of the area A. If we are simply interested in the voltage induced in one
loop due to the current flowing in another, we can write

VB = −MAB
dIA

dt

We can laplace transform the above expression and insert s = jω,

VB(s) = −MABjωIA(s)

where the polarity of the current and voltages must be considered correctly, and can be
found from the vector expression. The “dot” convention for transformers is such that when
the time derivative of the current flowing into the dotted terminal of coil A, the voltage
at the dotted terminal on coil B is positive, with the mutual inductance MAB being the
constant of proportionality. When IA and VB are defined according to the dot convention,
then is written

VB(t) = M
dIA(t)

dt
or

VB(s) = MjωIA(s)

Since the positive direction of all currents agrees with the dot convention, we can write the
voltage in coil 2 due to the current in coil 1 as

V21(s) = M12jωI1(s)

Because coil 2 and coil s are wound together, a positive current in coil s must result in a
negative voltage in coil 2,

V2s(s) = −Ms2jωIs(s)

so that

V2(s) = V21(s) + V2s(s) = M12jωI1(s) − Ms2jωIs(s)

Next we make compute the current in the shield loop,

Is(s) =
Vs(s)

jωLs + Rs
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where

Vs(s) = jωM1sI1(s) − jωMs2I2(s)

Let’s consider open-circuit conditions, Is(s) = 0,

Vs(s) = jωM1sI1(s)

Inserting into expression for Is(s) we get

Is(s) =
jωM1sI1(s)

jωLs + Rs

Now we insert this into the expression for Vs(s)

V2(s) = M12jωI1(s) − Ms2jω
jωM1sI1(s)

jωLs + Rs

Now we are going to make several assumptions. First wee assume that we are operating at
high frequency so that ωLs ≫ Rs. That gives us

V2(s) ≈M12jωI1(s) − Ms2jω
jωM1sI1(s)

jωLs

=jωI1(s)

[

M12 − Ms2
M1s

Ls

]

Next we assume (according to Ott, 1976) that Ls = Ms2, which gives us

V2(s) ≈ jωI1(s) [M12 − M1s]

Next, if we assume that conductor 2 and the shield are much closer together than the distance
between either and conductor 1, then M12 ≈ M1s, and we get

V2(s) ≈ jωI1(s) [M12 − M12] = 0

Expand argument in Northrop section 3.10.2.4

In Figure 3.34A the ground-loop voltage produces an additional input voltage. First, we see
that V− = 0. Next, let’s calculate V+. First the node equation at the negative terminal of
the voltage source Vs, VA

VA

RC2
+

VA − VGL

RG
= 0

RGVA + RC2VA − RC2VGL

RC2RG

= 0

RGVA + RC2VA − RC2VGL = 0

VA (RG + RC2) = RC2VGL
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VA = VGL
RC2

RG + RC2

Next the voltage on the positive input terminal is

V+ = (VA + VS)
RIN

RS + RC1 + RIN

Assuming that RIN ≫ RS + RC1, we get

V+ = VA + VS

The common mode input due to the ground loop, VCI , is the difference between V+ with VGL

present and V+ with VGL = 0,

VCI = V+ − V+(VGL = 0) = VA = VGL
RC2

RG + RC2

If we now introduce a large impedance, ZSG between ground and the negative terminal of
the voltage source VS, we can modify the equation for VA to be

V ′

A = VGL
RC2

RG + RC2 + ZSG

If we assume that ZSG ≫ RG + RC2, then we can re-write

V ′

A ≈ VGL
RC2

ZSG

and the coherent interference input becomes

V ′

CI = V ′

A ≈ VGL
RC2

ZSG

Inserting a large impedance between the negative terminal of the voltage source negative
terminal and the local ground partially mitigates the effects of a ground-loop current, if the
differential amplifier has zero CMRR.
Northrop 3.4

(A)
The approximate root power spectrum, ena is

ena =
√

lim
f−→∞

Sn(f)

=

√

4 × 10−6

1010

V√
Hz

=2 × 10−8 V√
Hz

=20
nV√
Hz
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(B)

〈v2
o〉 =

∫

∞

0

4 × 10−6

f 2 + 1010
df

=4 × 10−11

∫

∞

0

105

f 2 + 1010
df

=4 × 10−11π

2

Thus

RMS (vo) =
√

〈v2
o〉 = sqrt4 × 10−11π

2
= 7.9 µV

Northrop 3.11

(A)
The differential equation which desribes the filter is

v̇o = avo + Kx(t)

Laplace transform to obtain the transfer function

svo(s) = avo(s) + Kx(s)

vo(s) [s − a] = Kx(s)

H(s) =
vo(s)

x(s)
=

K

s − a

The input Gaussian white noise power spectrum is Si(f) = e2
i . The output noise power

spectrum, So(f) is

So(f) =Si(f) |H(j2πf)|2 = Si(f)

∣

∣

∣

∣

K

j2πf − a

∣

∣

∣

∣

2

=
e2

i K
2

(j2πf − a) (−j2πf − a)

=
e2

i K
2

(2πf)2 + a2

The output mean squared noise is

〈v2
o〉 =

∫

∞

o

So(f)df

=

∫

∞

0

e2
i K

2

(2πf)2 + a2
df
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Make a coordinate transformation: x = 2πf , dx = 2πdf =⇒ df = dx
2π

.

〈v2
o〉 =

∫

∞

0

e2
i K

2

x2 + a2

dx

2π

=
e2

i K
2

2πa

∫

∞

0

a

x2 + a2
dx

=
e2

i K
2

2πa

π

2

=
e2

i K
2

4a

The output mean-squared signal of the single-frequency sine-wave is

〈V 2
o 〉 =

V 2
s

2

K2

(2πfo)
2 + a2

The signal-to-noise ratio is then

SNRo =
〈V 2

o 〉
〈v2

o〉
=

V 2
s

2

K2

(2πf0)
2 + a2

4a

e2
i K

2

=
V 2

s

e2
i

2a

(2πf0)
2 + a2

(B)
The value of a which maximzes SNRo occurs where

dSNRo

da
= 0

First re-write

SNRo =
V 2

s

e2
i

=
2

(2πf0)
2

a
+ a

Now we only need to take the derivative of the denominator

0 =
d

da
denominator = −(2πf0)

2

a2
+ 1

(2πf 2
0 )

2

a2
= 1

a = ±2πf0

The correct solution is

a = 2πf0
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because the other solution produces a negative value for SNRo.
(C)
The maximized output SNRo is

SNRo,max =
V 2

s

e2
i

2 × 2πf0

(2πf0)
2 + (2πf0)

2

=
V 2

s

e2
i

1

2πf0

Northrop 3.12

(A)
Let’s compute the output voltage for some set of input voltages {Vi} to the ideal amplifiers.
The output voltage from each amplifier is

V ′

i = KVi

Next, let’s write the node equation at the negative input to the output amplifier.

N
∑

i=1

V ′

i

R
+

Vo

R
N

= 0

Thus

NVo

R
=

N
∑

i=1

V ′

i

R
=

N
∑

i=1

KVi

R

Vo =
K

N

N
∑

i=1

Vi

Now we need to find the mean-square signal and noise using the above formula. For the
signal, Vi = Vs, and we get

〈V 2
o 〉 =

K2

N2
(NVs)

2 = K2V 2
s

So for the signal we get the same result as for a single amplifier. For the noise, let’s use the
noise time-series, eR, and enai. So at each amplifier input the noise voltage is

eii = enai + eRs

After passing through the amplifier the voltage is

eai = Keii = Kenai + KeRs

Next we use the node equation at the negative input port of the amplifier IOA,

N
∑

i=1

eai

R
+

eo

R
N

= 0

6



N
∑

i=1

[

Kenai

R
+

KeRs

R

]

+
eo

R
N

= 0

eo =
R

N

K

R

[

N
∑

i=1

enai + NeRs

]

=
K

N

[

N
∑

i=1

enai + NeRs

]

=K

[

1

N

N
∑

i=1

enai + eRs

]

Next we compute the output power spectrum as e2
o. The only terms that are non-zero are

the terms e2
nai and e2

Rs
.

So(f) = e2
o = K2

[

1

N2

N
∑

i=1

e2
nai + e2

Rs

]

Since enai = enaj∀i, j, we can rewrite

So(f) =K2

[

1

N2
Ne2

na + e2
Rs

]

=K2
[ena

N
+ e2

Rs

]

=K2
[ena

N
+ 4kTRs

]

Now we can calculate the SNR as

SNR =
V 2

o

SoB
=

K2V 2
s

K2
[

ena

N
+ 4kTRs

]

B
=

V 2
s

[

ena

N
+ 4kTRs

]

B

(B) In the case when the resistors R and R/N also produce noise, eRi, and eR/N , we can
write the node equation as

N
∑

i=1

[eai

R
+

eRi

R

]

+
eo

R
N

+
eR/N

R/N
= 0

N
∑

i=1

[

Kenai

R
+

KeRs

R
+

eRi

R

]

+
eo

R
N

+
eR/N

R
N

= 0
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eo =
R

N

N
∑

i=1

[

Kenai

R
+

KeRs

R
+

eRi

R

]

− eR/N

=
K

N

N
∑

i=1

[enai + eRs ] +
1

N

N
∑

i=1

eRi
− eR/N

=
K

N

[

N
∑

i=1

enai + NeRs

]

+
1

N

N
∑

i=1

eRi
− eR/N

The power spectrum is e2
o, and when we square, only the terms e2

nai, e2
Rs

, e2
Ri

, and e2
R/N are

non-zero

So(f) =e2
o =

K2

N2

N
∑

i=1

e2
nai +

K2

N2
N2e2

Rs
+

1

N2

N
∑

i=1

e2
Ri + e2

R/N

Since e2
nai = e2

naj∀i, j and e2
Ri = e2

Rj∀i, j, we can rewrite as

So(f) =
K2

N2
Ne2

na +
K2

N2
N2e2

Rs
+

1

N2
Ne2

R + e2
R/N

=K2

[

e2
na

N
+ e2

Rs

]

+
1

N
e2

R + e2
R/N

Now the SNR becomes

SNR =
K2V 2

s

So(f)B

=
K2V 2

s
(

K2
[

e2
na

N
+ e2

Rs

]

+ 1
N

e2
R + e2

R/N

)

B

=
V 2

s
(

e2
na

N
+ e2

Rs
+

e2

R

NK2 +
e2

R/N

K2

)

B

=
V 2

s
(

e2
na

N
+ 4kTRs + 4kTR

NK2 +
4kT R

N

K2

)

B

=
V 2

s
(

e2
na

N
+ 4kTRs + 2

NK2 4kTR
)

B
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