Course title:
Instrumentation and Measurements

Instructor:
Dr. Anders M. Jorgensen
Workman 227
Phone: 505-835-5450
e-mail: anders@nmt.edu

Class hours:
Wednesday 9:30-11:45

Classroom location:
Workman 117

Office hours:
Wednesday 12-14

Textbooks:
1. Robert B. Northrop: Introduction to Instrumentation and Measurements, 2nd ed, CRC press ISBN 0-8493-3773-9 (I recommend buying it at www.barnesandnoble.com, where it costs $99.95, or $79.95 if you are a member)

2. John R. Taylor: An Introduction to Error Analysis, 2nd ed ISBN 0-935702-75-X (If you know error analysis well and have a different book, you don’t need this book, but I recommend it. You can also buy it from Barnes & Noble for $40).

3. Handouts

Learning objectives:
1. Understand the fundamental principles of measurement and uncertainty.

2. Understand how measurement systems are designed, calibrated, characterized, and analyzed.

3. Gain an understanding of some of the specific sensor systems trade-offs that must be made in commercial and scientific measurement systems.

4. Survey modern sensor systems for measuring a variety of physical quantities.

Prerequisites:
EE 308, EE 322, and EE 342 (or equivalent with consent of instructor)

Topics covered:
1. Measurement units and definitions.

2. Error analysis: meaning of uncertainty, estimating uncertainty, uncertainty propagation, and uncertainty distributions.

3. Noise and interference.

4. Signal conditioning and filtering.

5. Transducers.

7. Data acquisition, digital interfaces.

8. Discussion of specific sensor systems.

Course work:

1. Course readings and discussion problems. You are expected to come to class prepared to discuss the assigned readings and problems.

2. Homework. Written homework will be assigned approximately every week.

3. Research paper. A written paper will be required. In it you will discuss a sensor system that you choose.

4. Laboratory exercises. Several laboratory exercises will be assigned during the semester, to be arranged in class.

5. Final exam. There will be a take-home final exam.

Grading policy:

1. Homework 30%

2. Active participation in class 10%

3. Research paper and presentation 15%

4. Laboratory exercises 30%

5. Final exam 15%

Schedule: (tentative)
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Preparation</th>
<th>Hand in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 22</td>
<td>Course overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 29</td>
<td>Introduction</td>
<td>Northrop Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Sep 5</td>
<td>Error analysis</td>
<td>Taylor</td>
<td></td>
</tr>
<tr>
<td>Sep 12</td>
<td>Analog signal conditioning</td>
<td>Northrop Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Sep 19</td>
<td>Noise and interference</td>
<td>Northrop Chapter 3</td>
<td></td>
</tr>
<tr>
<td>Sep 26</td>
<td>Noise and interference</td>
<td>Northrop Chapter 3</td>
<td></td>
</tr>
<tr>
<td>Oct 3</td>
<td>Null measurements</td>
<td>Northrop Chapters 4 & 5</td>
<td></td>
</tr>
<tr>
<td>Oct 10</td>
<td>Transducers</td>
<td>Northrop Chapter 6</td>
<td></td>
</tr>
<tr>
<td>Oct 17</td>
<td>Transducers</td>
<td>Northrop Chapter 6</td>
<td></td>
</tr>
<tr>
<td>Oct 24</td>
<td>Sensor applications</td>
<td>Northrop Chapter 7</td>
<td></td>
</tr>
<tr>
<td>Oct 31</td>
<td>Sensor applications</td>
<td>Northrop Chapter 7</td>
<td></td>
</tr>
<tr>
<td>Nov 7</td>
<td>Basic electrical measurements</td>
<td>Northrop Chapter 8</td>
<td></td>
</tr>
<tr>
<td>Nov 14</td>
<td>Digital interfaces</td>
<td>Northrop Chapter 9</td>
<td></td>
</tr>
<tr>
<td>Nov 21</td>
<td>Student presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 28</td>
<td>Student presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 5</td>
<td>Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 14</td>
<td>Final exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory exercises:

There will be computational and practical labs which will be assigned at regular intervals during the semester by arrangement.