
Solutions to homework #7 due 2007/4/3

Problem 1

F1 F2

The diaphragm is the limiting aperture (rays from an axial object to the left of F1 will hit
the edge of the diaphragm before they hit the edge of the lens). The entrance pupil is the
image of the aperture in object space. To find it, write

1

s′
=

1

s
+

1

f

Since we are propagating rays from right to left we need to change the signs of s′ and s so
we get

−
1

s′
= −

1

s
+

1

f

with s = 20 mm, and f = 100 mm, so

s′ = −
1

− 1

20
+ 1

100

= 25 mm

So the entrance pupil is located 25 mm to the right of the lens. The size of the aperture can
be derived from the formula

m =
h′

h
=

s′

s

h′ = h
s′

s
= 10 mm

25

20
= 12.5 mm

The exit pupil is the image of the aperture in image space. It is the same as the aperture
itself, so it is 20 mm to the right of the lens and has a diameter of 10 mm.
Problem 2

The f-ratio of an optical system is the focal length divided by the diameter of the entrance
pupil. When light comes from the left the entrance pupil is 12.5 mm (it is the entrance pupil
that we computed in problem 1), and we get

f-ratio =
100

12.5
= 8

If light enters from the right, the entrance pupil is equal to the exit pupil computed in
problem 1, so we get
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f-ratio =
100

10
= 10

Problem 3

rays from
distant object

(a) The figure is drawn to scale. It can be seen that the limiting aperture is the front lens,
which is also called the objective lens. Thus, the entrance pupil is at the objective lens and
has the same diameter as the objective lens, 1”. The exit pupil is the image of the aperture.
The aperture is the objective lens.

1

s′
=

1

s
+

1

f

s′ =
1

1

s
+ 1

f

=
1

1

−11
+ 1

1

= 1.1

The diameter of the exit pupil, h′, is then

h′ = h
s′

s
= 1” ×

1.1

11
= 0.1”

(b) The un-vignetted entrance field of view is the entrance angle of a ray at the lower edge of
the objective which reaches the upper edge of the eye lens. The angle of such a ray between
the two lenses is

u′

1
= u2 =

0.75”

11”
= 0.0681̄8

We then use the formula from Chapter 2,

u′

1
= u1 −

y

f

u1 = u′

1
+

y

f
= 0.0681̄8 +

−0.5

10
= 0.1̄8

The un-vignetted FOV is thus ±0.1818 radians = ±1.04◦

For complete vignetting we are looking at a ray which comes from the top of the objective
lens and hits the top of the eye lens. It has angle

u′

1
= u2 =

−0.25”

11”
= −0.0227̄2

The entrance angle is

u1 = u′

1
+

y

f
= −0.0227̄2 +

0.5”

10”
= 0.02727 radians = 1.56◦

The completely vignetted FOV is thus ±0.02727 radians = ±1.56◦.
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We can compute the exit FOV by the same formula, or we can simply look at the magnifi-
cation. The magnification of this telescope is 10. We compress the beam by a factor of 10,
which means that we increase the FOV by a factor of 10.
Problem 4

We know that

m =
h′

h
=

s′

s
= −4

f

D
= 4

f = 4 in ⇒ D = 1 in

We want to find

NA = u =

∣

∣

∣

∣

D

2s

∣

∣

∣

∣

and NA′ = u′ =

∣

∣

∣

∣

D

2s′

∣

∣

∣

∣

We can combine

1

s′
=

1

s
+

1

f
and m =

s′

s

to produce

s =

(

1

m
− 1

)

f and s′ = (1 − m) f

Inserting those into the equations for NA and NA′ above we get

NA =

∣

∣

∣

∣

∣

D

2
(

1

m
− 1

)

f

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2
(

1

−4
− 1

)

4

∣

∣

∣

∣

∣

= 0.1

and

NA′ =

∣

∣

∣

∣

D

2 (1 − m) f

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2 (1 + 4) 4

∣

∣

∣

∣

= 0.025

Problem 5

This is an application of the cos4 rule. The illumination of an image point is related as cos4

of the angle that the ray makes with the optical axis in image space. We first need to find
the location of the image plane. Since we are imaging an object at infinity the image plane is
located distance s′ = B from the system, where B is the back focal distance of the combined
system. We first computed the combined focal length, fab, and then the back focal distance,
B.

fab =
fafb

fa + fb − d
=

16 × 8

16 + 8 − 8
= 8”
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s′ = B =
fab (fa − d)

fa

=
16 × (16 − 8)

16
= 4”

The illumination intensity is related to the distance from the axis as

I

I0

= cos4 θ

where θ is the angle of the point as seen from the exit pupil. The exit pupil is at the second
lens, and the image is 4” from the second lens, and the image point is 3” off the axis, so

θ = tan−1

( y

B

)

and the relative illumination is

I

I0

= cos4

(

tan−1

( y

B

))

= cos4

(

tan−1

(

3

4

))

= 0.410

Problem 6

θB

δxδx

B

D

f

B B
u

We place the reticle at the focus of the mirror. We wish to determine the distance that we
can move the reticle such that the blur is acceptable. The information we have is N = 5 and
D = 6”, where

N =
f

D
The acceptable blur is θB as seen from the mirror. The size of the blur at the focus is then

B = θBf = θBND

The relationship between the depth of focus, δx, and the size of the blur, B, is

B/2

δx
= u =

D/2

f
=

1

2N

δx = BN = θBN2D = 0.1 × 10−3 × 52 × 6” = 0.015”

If the mirror is f/2, then we get

δx = θBN2D = 0.1 × 10−3 × 22 × 6” = 0.0024”
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Problem 7

For this problem we need to look at depth-of-field. In class we discussed the two formulas

sN =
sf 2

f 2 − NB (s + f)
and sF =

sf 2

f 2 + NB (s + f)

If we place the image plane such that an object at distance s is in focus, and the acceptable
blue is B in the image plane, and the f-ratio is N , then objects as close as sN and as far as
sF are also acceptably in focus.

The hyperfocal distance is the distance s, for which sF = ∞. In other words, the denom-
inator of the second formula must be zero, so we have

0 = f 2 + NB (sH + f)

(a) If sH = −100”, f = 10”, and N = 10, we wish to determine B

B = −
f 2

N (sH + f)
= −

102

10 × (−100 + 10)
= 0.11”

(b) We insert the number we know into the expression for sN

sN =
sHf 2

f 2 − NB (sH + f)
=

100 × 102

102 − 10 × 0.111 (−100 + 10)
= 50”

(c) Show that if s = sH , then sN = sH

2
. First calculate the value of sH . From before we have

0 = f 2 + NB (sH + f)

from which we get

sH = −
f 2

NB
− f = −f

(

f

NB
+ 1

)

Insert s = sH into expression for sN ,

sN =
sHf 2

f 2 − NB (sH + f)
=

−
(

f

NB
+ 1

)

f 3

f 2 − NB
(

−f
(

f

NB
+ 1

)

+ f
)

=
−

(

f

NB
+ 1

)

f 3

f 2 − NB
(

−f2

NB

) =
−

(

f

NB
+ 1

)

f 3

f 2 + f 2
= −

(

f

NB
+ 1

)

f ×
1

2

=
sH

2

Problem 8

For this problem we must combine the effects of the illumination due to f-ratio and the
illumination due to being off-axis in the image plane. Illumination is proportional to the
inverse of the square of the f-ratio,

I ∼
1

N2

5



The illumination is also proportional to the 4th power of the cosine of the image angle, so

I ∼ cos4 θ

intensity thus scales as

I ∼
cos4 θ

N2

If we assume the same constant of proportionality for the two systems, we can write

I16

I8

=
cos4 θ16

cos4 θ8

N2

8

N2
16

=
cos4 30◦

cos4 45◦
82

162
= 0.56

Problem 9

d

d

The fringe pattern intensity is, from equation 6.16,

I = I0

sin2 m1

m2
1

·
sin2 m2

m2
2

with

mi =
πdi sin αi

λ

and

tan αi = sin αi =
xi

l′
for xi ≪ l′

so

mi =
πdixi

l′λ
=

πxi

NAλ

we can make the x-axis in terms in units of NAλ.
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Problem 10

We are imaging a distant point, which means that the image plane is located f behind the
image system. Let B be the spot size which defines the resolution of the optical system at
distance f . The angular resolution is then

θ = 1.22
λ

D
=

B/2

f

the f-ratio is

N =
f

D

and with the previous expression we can re-write as

N =
f

D
=

B/2

1.22λ
=

0.01 mm/2

1.22 × 0.00055 mm
= 7.45

Problem 11

The blur from the hole size, D, is equal to the hole size. The angular blur from diffraction is

θ = 2 × 1.22
λ

D

(the 1.22 factor is only radius). The spatial blue from diffraction is dθ, so we equate the hole
size blur and the spatial diffraction blur

D = 2.44
λ

D
d

and get

D2 = 2.44λd
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D =
√

2.44λd =
√

2.44 × 0.55 × 10−6 × 0.1 = 0.37 mm

Problem 12

If they are microscope objectives, the magnification is very large, so the objects are essentially
at the first focal point of the objective. Also assume that λ = 0.55 µm. If the angular
resolution is θ, then the spatial resolution at the object is

B = θf

We also have

θ = 1.22
λ

D
and NA =

D/2

f

so we get

D = 2NAf, θ = 1.22
λ

2NAf
, B = 1.22

λf

2NAf
= 1.22

λ

2NA

(a) NA = 0.25 ⇒ B = 0.0013 mm
(b) NA = 0.8 ⇒ B = 0.00042 mm
(c) NA = 1.2 ⇒ B = 0.00028 mm
Problem 13

The resolution of the telescope is

θ = 1.22
λ

D

D = 1.22
λ

θ
= 1.22

0.55 µm

11”
= 1.22

0.55 × 10−6

5.33 × 10−5
= 1.26 cm = 0.50 in

The eye can resolve 1′, so the telescope must magnify by a factor of

1′

11”
=

60

11
= 5.45

Problem 14

The resolution of a prism is

R =
λ

δλ
= B

dn

dλ

We are given dn
dλ

= 0.1 µm−1, and B = 1 in, so we get

R = B
dn

dλ
= 0.0254 × 0.1 × 106 = 2540

The resolution of a grating is

R = mN = mnd
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Where m = 1 is the order, n = 15000 in−1 is the density of lines, and d = 1 in is the width
of the grating. Inserting we get

R = mnd = 1 × 15000 × 1 = 15000
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