
Solutions to homework #9 due 2007/4/24

Problem 1

(a) We know that D = 10 in, and that fo + fe = D. If the magnification is M = 20×, then a
parallel ray must enter the objective lens 20 times further away from the optical axis than it
exits at the eye lens, so yobjective = Myeye. If we consider similar triangles, then it must also
be true that

yobjective

yeye

=
fo

fe

or

M =
fo

fe

We now have two equations with two unknowns:

fo + fe = D M =
fo

fe

The solution is

fo =
MD

M + 1
=

20 × 10

21
= 9.52 in

and

fe =
D

M + 1
=

10

21
= 0.48 in

(b) The eye relief is the distance from the last optical surface to the exit pupil. Since we
assume thin lenses, it is the distance from the seond lens to the exit pupil. The exit pupil
is the image of the aperture, which we assume to be the objective in this case. We use the
well-known formula

1

s′
=

1

s
+

1

f

where s = −10 in, and f = 0.48 in. So we get

s′ =

(

−
1

10
+

1

0.48

)

−1

= 0.50 in
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(c) The resolution of the eye is 1′. Since the telescope provides 20× magnification, the
diffraction-limited resolution of the objective lens must be 1

20

′

. We then use the Rayleigh
criterion, and assume a wavelength of 500 nm. We get

1.22
λ

D
= θ ⇒ D = 1.22

λ

θ

Inserting we get D = 4.19 cm = 1.65 in
(d) I don’t know what he means by real field, but I am going to calculate the unvignetted
field. That is the entrance angle of a ray entering at the top of the objective and passing the
bottom of the eye lens. I assume that the diameter of the objective is 1.83 in. In that case
the angle of that ray is

u1 =
−0.25 − 1.83

2

10
= −0.1165

The angle of the entering ray can be obtained through ray tracing through the objective
lens.

u1 = u0 −
y0

f

so

u0 = u1 +
y0

f
= −0.1165 +

1.83
2

9.52
= −0.0204

The un-vignetted field of view is therefore ±0.0204 = 1.17◦. The 100% vignetted field of
view corresponds to the ray which goes from the bottom of the objective lens to the bottom
of the eye lens. It travels a vertical distance of 1.83/2 − 0.25 = 0.66, so it has an angle of
u1 = 0.0665. Converting that to entrance angle in the same way as above we get

u0 = u1 +
y0

f
= 0.0665 −

1.83
2

9.52
= −0.0296

The fully vignetted field of view is therefore ±0.0296 = 1.70◦.
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Problem 2
This system is very similar to the one displayed in Figure 9.26 on page 288, except that
the discussion in Figure 9.26 pertained to cylindrical elements. But conventional spherical
elements are very similar.

f=10 in

d=3 in

fo<0 fe>0

(a) The effective focal length, efl is defined as y1/u
′

k, where y1 is the entrance height of a ray,
and u′

k is the exit angle of the ray. The afocal telescope does not change the entrance angle of
rays, so to reduce the efl by a factor of two, the afocal attachment must increase the entrance
beam diameter by a factor of two. This corresponds to a magnification of M = 0.5. There
are several ways of finding the focal lengths of the two lenses of the telescope attachment. I
will use ray-tracing. A ray which enters the first lens at (y1, u1 = 0) will exit the second lens
at (2y1, u

′

2 = 0). The lenses are separated by distance d, so the angle of the rays between the
lenses is u′

1 = u2 = y1

d
. The ray-tracing equation is

u′ = u −
y

f

for the two lense we then have

u′

1 = u2 = u1 −
y1

f1

u′

2 = u2 −
2y1

f2

Now inserting everything that we know

y1

d
= −

y1

f1

0 =
y1

d
−

2y1

f2

which reduces to

f1 = −d
1

d
=

2

f2

⇒ f2 = 2d

Inserting numbers we get f1 = −3 in and f2 = 6 in.
(b) I am going to assume that the second lens is immediately adjacent to the third lens, and
that it has the same diameter as the third lens. In that case only need to consider whether
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rays entering the first lens will make it through the second lens. For 50% vignetting I am
looking at a marginal ray through the first lens which enters the second lens through its
center. The question then becomes “What should be the height of that ray through the first
lens for the angle into the first lens to be 60◦?” The following figure illustrates the geometry

Vignetted rays
y0

d=3 in

The angle of the ray in the space between the two lenses is thus

u′

1 = u2 = −
y1

d

and its relationship to the entrance ray angle is

u′

1 = u2 = u1 −
y1

f1

Eliminating u′

1 we get

−
y1

d
= u1 −

y1

f1

Isolate y1 we get
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y1

(

1

f1

−
1

d

)

= u1 ⇒ y1 =
u1

1

f1

− 1

d

If we set u1 = −60◦ = −1.047, and f1 = −3 in, and d = 3 in, we can find y1 as

y1 =
−1.047

−1
3
− 1

3

= 1.571

The diameter of the front lens should then be

D = 2 × 1.571 = 3.141 in

Problem 3
Exit
pupil

ImageObject
plane

Objective
lens

Eye
lens

plane
Image

plane of
of eye lens objective lens

s of obj lens = −3 in

s’ of obj lens

r
eye relief

s

of eye
lens

s’ of eye lens

l = length of tube

(a) The length of the microscope is l = s′o − se. We have

1

s′o
=

1

so

+
1

fo

Inserting so = −3 in and fo = 2 in we get s′o = 6 in. Next we have

1

s′e
=

1

se

+
1

fe

Isolating se and inserting s′e = −∞ and fe = 2 in we get se = −2 in. The length of the
microscope is then l = s′o − se = 8 in.
(b) The magnification power of a microscope can be calculated as the standard viewing
distance (10 in) divided by the effective focal length of the microscope,

MP =

∣

∣

∣

∣

10, in

fm

∣

∣

∣

∣

The effective focal length of the microscope can be calculated with the two lens equation

fm =
fofe

fo + fe − l
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Inserting fo = fe = 2 in and l = 8 in we get fm = −1 in, and MP = 10.
Problem 4
The situation described is one in which the focal points of the lenses do not coincide. The
image projected from the first lens is located relative to the focal point of the second lens in
such a way that the second lens project a virtual image 20 inches to the left. We know f , s′,
and we want to find s in the formula.

1

s′
=

1

s
+

1

f

we get

s =

(

1

s′
−

1

f

)

−1

=

(

1

−20
−

1

5

)

−1

= −4

The two lense are thus separated by 9 in. The magnification is the ratio of beam diameters.
The beam diameter varies with location of the eye. Rays from an infinitely distant object
will strike the eye lens at 4/5 of its diameter. The magnification is thus 5/4, of 1.25. The
pupil is the image of the objective lens, and its location, s′, can be found from

1

s′
=

1

s
+

1

f

where s = −9 in, and f = 5 in. We get s′ = 11.25 in. At the pupil, rays from an object point
20 in behind the lens will have expanded to 4/5 × 31.25

20
= 5/4. The magnification is thus

4/5 = 0.8.
Problem 5
The visual acuity for rangefinders is 10”. If we include a 20× telescope, then the precision
of alignment is 0.5”. The relationship between baseline, B, angle, θ, and distance, D is

B

D
= θ ⇒ D =

B

θ
Assuming a perfectly determined baseline, the relationship between distance uncertainty and
angle uncertainty is

σ2
D =

(

B

θ2

)2

σ2
θ

We want to determine the B which will produce σD

D
= 0.5%. Eliminate θ.

σ2
D =

(

BD2

B2

)2

σ2
θ

or

σD =
D2

B
σθ

or

σD

D
=

D

B
σθ
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Now we isolate B,

B =
D
σD

D

σθ

Now insert values

B =
2000

0.5 × 10−2
0.5” = 0.97 m

Problem 8

First, let’s find the focal length of the lens,

1

f
= (n − 1)

(

1

R1

−
1

R2

+
t (n − 1)

R1R2n

)

Using R1 = ∞, R2 = −2.5 mm, t = 2.5 mm, and n = 1.5, we get

f = 5.0 mm

Next we want to know image location and magnification. We already know that s = −50 mm
(1st principal point is at plane surface). We want to know s′

1

s′
=

1

s
+

1

f

We get s′ = 5.56 mm. Now we can compute the magnification,

m =
s′

s
= −

5.56

50
= 0.11
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In the opposite direction, the 20 mm wide beam of light will keep expanding until the
focus. At a distance of 50 mm it is 20 mm wide, and at a distance of 55.56 mm it is 20 mm×
55.56
50

= 22.22 mm wide.
Problem 9
This problem refers to the figure and expressions on page 294. There is a factor of 4 zoom
ratio. That can mean that M = 4 or M = 0.25.

At minimum shift, s1 + s2 = 10 in, and at minimum shift −l′ = 10 in.
We get

ΦA =
R − 1

R (s1 + s2)

ΦB = −ΦA (R + 1)

ΦC =
(ΦA + Φ) R (R + 1)

3R − 1

where R =
√

M . For M = 4, these expressions evaluate to

ΦA = 0.05 in−1 ΦB = −0.15 in−1 ΦC = 0.18 in−1

and for M = 0.25, they evaluate to

ΦA = −0.1 in−1 ΦB = 0.15 in−1 ΦC = 0

The elements separations at minimum shift are

s1 =
R − 1

ΦA (R + 1)

s2 =
R − 1

ΦAR (R + 1)

For M = 4, these expressions evaluate to

s1 = 6.67 in s2 = 3.33 in

and for M = 0.25 we get

s1 = 3.33 in s2 = 6.67 in

The back focal length, l′, is

l′ =
3R − 1

ΦR (R + 1)

and at minimum shift, Φ = 0.1 in−1, so we get l′ = 8.33 in and l′ = 6.67 in for M = 4 and
M = 0.25 respectively.
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