OPT 300 Course Syllabus

Course title:

Introduction to Optics

Instructor:

Dr. Anders M. Jorgensen

Workman 245

Phone: 505-835-5450

e-mail: anders@ee.nmt.edu

Class hours:

Tuesday 9:30-11:45

Classroom location:

Workman 117

Office hours:

Tuesday 12-16

Textbooks:

- 1. Warren J. Smith: Modern Optical Engineering. The Design of Optical Systems, 3rd edition, McGraw-Hill. (You can order this book from www.amazon.com for \$70.36).
- 2. Handouts

Learning objectives:

- 1. Understand the fundamental principles of optical systems.
- 2. Understand how optical systems are designed, characterized, and analyzed.
- 3. Gain an understanding of some of the specific trade-offs that must be made in commercial and scientific optical systems.
- 4. Survey modern optical systems.

Prerequisites:

PHYS 122 or 132, MATH 231

Topics covered:

- 1. The electromagnetic spectrum, light wave propagation
- 2. Snell's law of refraction.
- 3. Image formation, perfect/Gaussian optics.

- 4. Aberrations.
- 5. Prisms and Mirrors.
- 6. The eye.
- 7. Aperture stops and their effects.
- 8. Depth of focus, resolution.
- 9. Optical materials, coatings.
- 10. Radiometry and photometry.
- 11. Basic optical systems, including telescopes, field lenses, microscopes, rangefinders, and zoom systems.
- 12. Image evaluation, aberrations, point spread functions.
- 13. Design of optical systems.
- 14. Examples of optical system designs.

Course work:

- 1. Course readings and discussion problems. You are expected to come to class prepared to discuss the assigned readings and problems.
- 2. Homework. Written homework will be assigned at the conclusion of every chapter.
- 3. Laboratory exercises. Approximately three computational labs will be assigned during the semester. You will also be required to demonstrate practical skills during separate exercises. A formal report is required for each laboratory.
- 4. Final exam. There will be a take-home final exam.

Grading policy:

- 1. Homework 30%
- 2. Active participation in class 10%
- 3. Computational Laboratory exercises 30%
- 4. Practical Laboratory exercises 10%
- 5. final exam 20%

Schedule: (tentative)

Date	Topic	Preparation	Hand in
Jan 16	Course Overview		
Jan 23	Chapter 1	Ch 1	
Jan 30	Chapter 2	Ch 2	Ch 1: 1-6
Feb 6	Chapter 3	Ch 3	Ch 2: 1-11
Feb 13	Optical Design Software	Study Oslo EDU	Ch 3: 1-4
Feb 20	Chapter 4	Ch 4	
Feb 27	Chapter 5	Ch 5	
Mar 6	Chapter 6	Ch 6	Ch 5: 1-6
Mar 13	Spring break		
Mar 20	Chapter 6	Ch 6	
Mar 27	Chapter 7	Ch 7	Ch 6: 1-14
Apr 3	Chapter 9	Ch 9	Ch 7: 1-5
Apr 10	Chapter 11	Ch 11	Ch 9: 1-9
Apr 17	Chapters 12, 13, 14	Chs 12, 13, 14	Ch 11: 1-3
Apr 24	Review		
May 1	Final Exam		

Computational Laboratory:

There will be three computational labs which will be assigned at regular intervals during the semester.

Physical Laboratory:

You will be required to demonstrate practical skills in one or more laboratory exercise to be scheduled by arrangement during the semester.