
Lab 10: Build a Computer

November 18, 2008

Contents

1 Prelab 3

2 Lab 3

3 Supplementary Material 4

3.1 Quartus . 4
3.1.1 Graphical Design . 4

A conceptual block diagram of a simple computer is shown in Figure 1. In
previous labs you have already designed the Addr Mux, the ALU, the control
unit and the required registers. In this lab you will put all the components
together to build a computer. The only missing block is the memory block
which you can find here. You will also need the mem init.v in which you are
going to insert your program code. You are going to use graphical design to
implement the computer as shown in Figure 1. Instructions on how to do that
is provided in the prelab section 1.

1

file:mem_block.v
file:mem_init.v

ALU

PC

MAR

IR

Z C

ACCA

Addr_Mux

PC_INC
PC_LOAD
MAR_LOAD
IR_LOAD

INST

C

Z

ALU_CTRL

Z_LOAD

C_LOAD

Processor

MEM_W

0xFF

Memory

Control

Addr_Mux_Sel

ACCA_LOAD

data_in

address

data_out

output_port

input_port

Figure 1: Simple Computer

2

1 Prelab

1. Using the instruction set provided in the Appendix 3.1.1, write a computer
program to generate running lights. One way to accomplish this is to start
with an 8-bit number 0000 0001 (where the one represents the LED that
would be off). Then left shift that number once you have reached the end,
jump back to the beginning of the program. Figure 2 shows the expected
output at different time steps.

Step

8

7

6

5

4

3

2

1

Figure 2: The sequence at which the LEDs turn on or off. The empty rectangles
with black boarder represent and LED in the off state.

.

2. Using the graphical method as shown in Section 3, design and build the
entire computer.

2 Lab

1. Enter your running light program in to the mem init.v file.

2. Simulate the computer you have created in the prelab.

3. Run your code on the Altera board.

3

3 Supplementary Material

3.1 Quartus

3.1.1 Graphical Design

1. Start a new project and include the mem block.v.

2. Open the mem block.v file and select File > Create/Update > Create

Symbol Files for Current File. This creates a memory block as shown
below.

Figure 3: Memory block symbol

3. Open a block diagram file by
File > New > Design Files > Block Diagram/Schematic file Input
and output pins are located under primitives/pin. That creates a *.bdf
file.

4. Right click in the main window and select Insert > Symbol.

5. Under you project directory select the mem block you just created.

6. Keep adding the files that you have created in previous lab for remaining
components of the computer. Each time create a Symbol file and added
it to the your main *.bdf file.

7. For the address mux and the reset constant you can use already existing
block in Quartus. You can do that by
Insert > Symbol, select ../quartus/libraries/, then select lpm mux

and/or lpm constant which are located under megafunctions/gates. In-
put and output pins are located under primitives/pin.

4

file:mem_block.v

8. Once you are done start connecting the blocks as shown in Figure 1.

5

Appendix

Table 1: Computer Instructions

Mnemonic Operation

0 nop
Do nothing

(no operation)

1 LDAA addr Loads ACCA with the value in memory at address
addr. C stays the same, Z changes(load ACCA from mem-

ory)

2 LDAA IMM #num Loads ACCA with num, the value in memory at
the address immediately following the LDAA #num

command. C stays the same, Z changes
(load ACCA with an im-
mediate)

3 STAA addr Stores the value in ACCA at memory address
addr. C stays the same, Z changes(store ACCA in memory)

4 ADDA addr Adds the value in memory location addr to the
value in ACCA and saves the result inACCA. C and
Z change

(add ACCA and value in
memory)

5 SUBA addr Subtracts the value in memory location addr

from the value in ACCA and saves the result in
ACCA. C and Z change

(subtract value in mem-
ory from ACCA)

6 ANDA addr Perform a logical AND of the value in memory
location addr with the value in ACCA. Save the
result in ACCA. C stays the same, Z changes

(logical AND of ACCA and
value in memory)

7 ORAA addr Perform a logical OR of the value in memory
location addr with the value in ACCA. Save the
result in ACCA. C stays the same, Z changes

(logical OR of ACCA and
value in memory)

8 CMPA addr Compare ACCA to value in addr. This is done by
subtracting the value in addr from ACCA. ACCA
does not change. C and Z change

(Compares ACCA to the
value in addr)

9 COMA Replace the value in ACCA with its one’s
complement. C is set to 1 and Z changes(Complement ACCA)

A INCA Increment value in ACCA. C stays the same and Z

changes(INCA ACCA)

B LSLA
Logical shift left of ACCA. C and Z change

(logical shift left ACCA)

C LSRA
Logical shift right of ACCA. C and Z change

(logical shift right ACCA)

D ASRA
Arithmetic shift right of ACCA. C and Z change

(Arithmetic shift right
ACCA)

6

E JMP addr Jumps to the instruction stored in address addr.
The PC is replaced with addr. C and Z stay the
same

(jump)

F JCS addr Jumps to the instruction stored in address addr
if C=1. If C is not set, continue with next
instruction. C and Z stay the same

(jump if carry set)

10 JCC addr Jumps to the instruction stored in address addr
if C=0. If C is set, continue with next instruction.
C and Z stay the same

(jump if carry not set)

11 JEQ addr Jumps to the instruction stored in address addr
if Z=1. If Z is not set, continue with next
instruction. C and Z stay the same

(jump if Z set)

7

	Prelab
	Lab
	Supplementary Material
	Quartus
	Graphical Design

