EE 521: Homework 6

1. Figure 1 shows an ideal discrete lowpass filter. The inverse discrete Fourier transform of the

Figure 1: Ideal lowpass filter
above filter is given by

$$
\begin{equation*}
x(n)=\frac{\sin \omega_{c} n}{\pi n}, \quad-\infty<n<\infty \tag{1}
\end{equation*}
$$

(a) Generate $x(n)$ over the range of $-N$ to N for various values of N. For each value of N use freqz in MATLAB and plot the magnitude response.
(b) Is there a value of N that will give you the ideal lowpass filter shown in Figure 1.
(c) Multiply the sequence $x(n)$ by a hamming window and recompute the freqz and plot the result. How is that different from the first part.
2. What is the z-transform of a sequence of the form shown in the Eq. 1?
3. Given

$$
\begin{equation*}
X(z)=\frac{1}{1-z^{-1}} \tag{2}
\end{equation*}
$$

(a) Compute the inverse z-transform of $X(z)$.
(b) Compute and plot $X(\omega)$. Since $X(\omega)$ is ∞ at $\omega=0$, replace that value with an impulse.
(c) What can you say about the frequency content of a signal that has an abrupt change?
4. Given a sampling rate of 1 kHz , design a digital oscillator.
(a) Show the pole-zero locations.
(b) Compute the transfer function $H(z)$.
(c) Derive the impulse response $h(n)$.
(d) Derive the difference equation.
(e) what is the input to the difference equation that will result in an oscillator output.

