
Lab 2: Introduction to Verilog HDL and Quartus

September 8, 2009

In the previous lab you designed simple circuits using discrete chips. In this lab you will do the same but by
programming the CPLD. At the end of the lab you should be able to understand the process of programming
a PLD, and the advantages of such an approach over using discrete components.

Contents

1 Prelab 1

2 Lab 2

3 Supplementary Material 3

3.1 Introduction to Verilog . 3

3.2 Using Quartus . 5

3.2.1 Start New Project . 5

3.2.2 Writing the Code . 5

3.2.3 Compiling . 6

3.2.4 Pin Assignment . 6

3.2.5 Simulating the Designed Circuit . 7

3.2.6 Programming the CPLD . 8

1 Prelab

1. Read the material provided in the supplementary section. 3

2. Using the schematics of the board, if the CPLD sends a logic 1 to one of the LEDs, would it turn on
or off?

1

http://www.ee.nmt.edu/~elosery/fall_2008/ee231L/den_v10.pdf

EE 231 EE Dept., New Mexico Tech Fall 2009

x

y
S

C

Figure 1: Half Adder

2 Lab

1. Write a gate-level Verilog program to implement the half adder circuit.

2. Assign your two inputs to two of the push buttons and your two outputs to two of the LEDs. Before

you continue, ask the TA to check your assignment.

3. Simulate your designed circuit, perform both functional and timing simulations. Print your waveforms.
Are the two waveforms the same? Discuss.

4. Write a Verilog program to implement the same half adder circuit using dataflow modeling and resim-
ulate your cicuit. Note: you don’t have to respecify your waveforms as you have already saved them in

a file.

5. Program your CPLD to implement your circuit and verify that it works. Ask the TA to initial your

labbook once you have it working.

6. Use vectors to describe your inputs and outputs. Send signals to all of the LEDs to have them off
when you send them a logic 0 and turn on when you send them a logic 1, and similarly, the input to
be logic 1 into your cicuit when to press the button and zero otherwise.

2

EE 231 EE Dept., New Mexico Tech Fall 2009

3 Supplementary Material

3.1 Introduction to Verilog

1. In order to write an Verilog HDL description of any circuit you will need to write a module which is
the fundamental descriptive unit in Verilog. A module is a set of text describing your circuit and is
enclosed by the keywords module and endmodule.

2. As the program describes a physical circuit you will need to specify the inputs, the outputs, the behavior
of the circuit and how the gates are wired. To accomplish this, you need the keywords input, output,
and wire to define the inputs, outputs and the wiring between the gates, respectively.

3. There are multiple ways to model a circuit

• gate-level modeling,

• dataflow modeling,

• behavioral modeling,

• or a combination of the above.

4. A simple program modeling a circuit (see Figure 2) at the gate-level, is provided below.

Program 1 Simple program in Verilog modeling a circuit at the gate-level

module simple_circuit(output D,E, input A,B,C);

wire w1;

and G1(w1,A,B);

not G2(E,C);

or G3(D,w1,E);

endmodule // no semi-colon

5. As seen above the outputs come first in the port list followed by the inputs.

6. Single line comments begin with //

B

A

C E

D

G1

G2

G3

Figure 2: Simple Circuit

3

EE 231 EE Dept., New Mexico Tech Fall 2009

7. Multi-line comments are enclosed by /* */

8. Verilog is case sensitive.

9. A simple program modeling a circuit using dataflow, is provided below.

Program 2 Simple program in Verilog modeling a circuit using dataflow

module simple_circuit(output D,E, input A,B,C);

assign D = (A & B) | ~C;

assign E = ~C;

endmodule

.

10. You can identifiers describing multiple bits known as vectors. For example you may write Program 2
as

Program 3 Simple program in Verilog modeling a circuit using dataflow using vectors

module simple_circuit(output [1:0] Y, input [0:2] X);

assign Y[1] = (X[0] & X[1]) | ~X[2];

assign Y[0] = ~X[2];

endmodule

.

In this example, we have the input as three bits representing A, B, C and we have denoted them
as [0:2] X which means we have three bits with the index 0 representing the MSB. We could have
specified it as [2:0] X in which case the index 2 represents the MSB.

11. Given an identifier [7:0] X you can assign it values by

assign [7:0] X = 8’b00101011;

where the 8’b specifies that we are defining an 8-bit binary number and 00101011 is that 8-bit binary
number. You can also assign parts of the number as

assign [2:0] X = 3’b101;

which assigns only the last three bits of X.

4

EE 231 EE Dept., New Mexico Tech Fall 2009

3.2 Using Quartus

To implement the circuits that you will design on the CPLD there are few key steps.

1. Write your program using Verilog HDL.

2. Compile your code.

3. Correct any syntax errors.

4. Simulate your circuit to make sure that you are getting the behavior you expect.

5. Download your program onto the CPLD.

6. Test the operation of circuit.

Quartus helps you implement all of the above easily. The following sections describe how to do those basics
steps.

3.2.1 Start New Project

1. Select File > New Project Wizard.

2. Set the directory name. You may want to have a directory with the name ee231 where you save all
your projects for this class. Make sure that you create a new project for each project and do

not just copy the director over.

3. Set the name of the project. It will be simple if you name it by the lab name, e.g., lab1.

4. Click Yes to create the directory if it does not exist.

5. You can add existing files if you have already them, otherwise select Next.

6. Next you need to specify the device that you are using. Set the Device Family to MAX II and select
EPM2210F324C3.

7. Press Next.

8. Press Finish.

3.2.2 Writing the Code

1. Select File > New.

2. Choose Verilog HDL File.

3. Click Ok.

4. Select File > Save As. For one file project name, the name of the file should be the same as the

project. In addition, the module name should be the same as the filename

5. Choose Save as type, and select Verilog HDL File.

5

EE 231 EE Dept., New Mexico Tech Fall 2009

6. Put a check-mark in the box Add file to current project. Unless the file is part of the

project you won’t be able to proceed. If you don’t add the file now you cal latter added

by selecting Project > Add/Remove Files in Project.

7. Click Save.

8. Now you are ready to type in your program.

3.2.3 Compiling

1. Select Processing > Start Compilation, or click on the play icon on the toolbar.

2. You can click on Processing > Compilation Report to see the results of the compilation.

3. If there are no errors, then your program is correct from the syntax point of view. This may not

mean that your program will do what you want, because you may have some logic errors

that the compiler will not be able to detect.

3.2.4 Pin Assignment

You need to specify which pins of the CPLD are connected to which inputs and which outputs. Some pins
have already been wired to the LEDs and the push buttons. A list of those pins are provided in Table 1.

1. Select Assignments > Assignment Editor.

2. Under Category select Pin.

3. Double click on <<new>>, a drop-down menu will appear, select the input or output you want.

4. In the column labeled Location select the pin you want. Table 1 shows the locations of hardwire for
your evaluation board. For example, if you wanted to connect the output ”E” to the first red LED,
you would select Location Pin U4 for Node E.

5. Repeat steps 3 and 4 to assign all the inputs and outputs of your circuit.

6. The Altera default is that all unused pins should be assigned “As outputs driving ground”. This is
a good choice for pins not connected to anything (it reduces power and noise), but is not good for
pins which may be connected to, say, a clock input – you then have both the clock and the Altera
chip trying to drive this input. A safer choice is to define all unused pins As input tri-stated with

weak pull-up resistor. To do this,

(a) Go to Assignments > Device

(b) click on Device and Pin Options

(c) Select the Unused Pins tab

(d) From the Reserve all unused pins: drop-down menu, select As input tri-stated with weak

pull-up resistor.

6

EE 231 EE Dept., New Mexico Tech Fall 2009

Signal Name CPLD Pin No. Description

LED[0] PIN U13 Blue LED
LED[1] PIN V13 Green LED
LED[2] PIN U12 Yellow LED
LED[3] PIN V12 Red LED
LED[4] PIN V5 Blue LED
LED[5] PIN U5 Green LED
LED[6] PIN V4 Yellow LED
LED[7] PIN U4 Red LED
KEY[0] PIN U15 Button1
KEY[1] PIN V15 Button2
KEY[2] PIN U14 Button3
KEY[3] PIN V14 Button4

CLOCK 50 PIN J6 50 MHz clock input

Table 1: Pin Assignments for the LEDs, buttons, and clock input

3.2.5 Simulating the Designed Circuit

When simulating a circuit you need to figure out the waveforms for the inputs that will make you confident
that your circuit works. If you have a simple circuit, you can easily test all the possibilities. As the circuit
gets more and more complicated you will need to figure out a scheme to verify its operation. In simulating
your circuit there are three main steps.

1. Create a waveform file.

2. Select your inputs and outputs.

3. Create a waveform for each input.

4. Run the simulation to generate the output for verification with your expected results.

A detailed explanation of the above steps are described below.

1. Select File > New.

2. Click on Vector Waveform File.

3. Click Ok.

4. Save the file using some meaningful name, filename.vwf.

5. Set the desired simulation time by selecting Edit > End.

6. Select View > Fit in Window.

7. Select the inputs and outputs you want to observe by clicking Edit > Insert > Insert Node or

Bus.

7

EE 231 EE Dept., New Mexico Tech Fall 2009

8. Click on Node Finder.

9. Click on the input or output you want to observe and click on the > sign. Repeat this process for all
your inputs and outputs.

10. The next step is to specify the logic value of each of the inputs you have selected and the duration of
that value.

11. Save the file, e.g. lab2.vwf.

12. After the waveforms have been defined, we can simulate our circuit. There are two types of modes
that we are concerned with. 1) functional: we are not worried about the delays and we are interested
to make sure that logically the circuit is working; 2) timing: we simulate the circuit and include the
delays in all the gates. First perform the functional simulation and then perform the timing. To select
the mode of the simulation:

(a) Select Assignments > Settings.

(b) Click on Simulator Settings.

(c) Choose Functional or Timing. For now choose Functional unless otherwise instructed.

13. Create the required netlist that the waveform file will be applied to by selecting Processing >

Generate Functional Simulation Netlist.

14. Run the simulation by clicking Processing > Start Simulation, or by clicking on the play icon in
the simulation waveform window.

3.2.6 Programming the CPLD

The final step is to program the CPLD with your designed circuit.

1. Select Tools > Prgorammer.

2. Select JTAG in the Mode box.

3. If USB-Blaster is not chosen in the box next to the Hardware Setup, selected by clicking on the
Hardware Setup.

4. You should see a file listed with extension .pof, if not add it.

5. Finally, press Start. The program will download on your board and once it is finished you can test
your circuit in hardware.

8

	Prelab
	Lab
	Supplementary Material
	Introduction to Verilog
	Using Quartus
	Start New Project
	Writing the Code
	Compiling
	Pin Assignment
	Simulating the Designed Circuit
	Programming the CPLD

