
Lab 8: Registers

October 26, 2009

In this lab we are going to investigate and build several sequential circuits. The behavior of the sequential
systems depend not only on the current values of the input variables, but also on the sequence of input
values that occurred in the past. Such systems have some kind of storage of memory elements. In this lab
we are going to design couple types of registers.

Contents

1 Prelab 1

1.1 Registers . 1

1.1.1 Simple Latch . 1

1.1.2 Program Counter . 2

1.2 Prelab Questions . 2

2 Lab 3

1 Prelab

1.1 Registers

In this lab we will investigate two types of registers.

1.1.1 Simple Latch

One type of register is a simple latch as shown in Figure 1. When LOAD is high, the output data D OUT will
not change. When LOAD is low, the input data D IN should be latched into the register on the rising edge of
CLOCK.

1

EE 231 EE Dept., New Mexico Tech Fall 2009

REG D_OUT
CLOCK

D_IN

L

LOAD

Figure 1: Register using simple latch

1.1.2 Program Counter

The second type of register is called a program counter (PC). This keeps track of which instruction in memory
to execute. Usually programs are executed sequentially, so after executing the instruction at address, say,
0 × 0123, the program will then execute the instruction at address 0 × 0124. In this case PC needs to
increment after each instruction is executed. Sometimes the program needs to execute code in a different
area of memory - flow control statements such as for and while do this. In this case, the PC needs to be
loaded with a new address. In order for the program to start, you will need to reset the program counter to
zero to start execution at the first instruction of the program. Figure 2 shows what the PC looks like.

D_OUT
CLOCK

D_IN
PC

RI

INCREMENT

RESET

L

LOAD

Figure 2: PC register

Normally, INCREMENT, LOAD, and RESET will be high. When INCREMENT is low, the PC should increment
D OUT to D OUT+1 on the rising edge of CLOCK. When LOAD is low, the input data D IN should be latched into
the register on the rising edge of CLOCK. The system which controls PC will ensure that LOAD and INCREMENT

are never low at the same time. (In your program, you should have PC do something sensible, like latch
D IN, if both happen to be low simultaneously.) When RESET is low, PC should immediately reset to 0× 00;
it shouldn’t wait for a clock edge. This is normally called a synchronous counter with synchronous load and
asynchronous reset.

1.2 Prelab Questions

1. Design an eight-bit synchronous latch in Verilog.

2

EE 231 EE Dept., New Mexico Tech Fall 2009

2. Design an eight bit PC as described above in Verilog.

3. Write a program which uses the above two designs as functions to test that they work.

2 Lab

In this part you will implement five different 8-bit registers: PC (program counter), MAR (Memory Addressing
Register), OUT (Output), ACCA (Accumulator A), and INST (Instruction Register). In addition, you will
design two single one-bit registers, C and Z (What simple circuit elements are C and Z?).

MAR, OUT, ACCA, and INST, are all 8-bit registers with synchronous parallel load. These registers all have
a clock input, an 8-bit data input, and an active low load/enable input, as well as an 8-bit output.

For example, when MAR L (Memory Addressing Register Load) is VCC the MAR register is not enabled.
When MAR L goes low the MAR register is enabled and on the next clock pulse the 8-bit data on the input line
is loaded into the MAR register.

The PC is an 8-bit register with synchronous parallel load capability, synchronous count, and an asyn-
chronous reset. The PC has a clock input, an 8-bit data input, and 3 additional inputs: PC L, PC I, and
RESET. These three inputs are all active low. PC L loads the program counter, PC I increments the program
counter by 1, and RESET resets the program counter to 0.

Implement these registers (synchronous load and synchronous load/count) as Altera functions. Include
each one in a higher-level design file. Use a DIP switch for the input data, and switches on the evaluation
board for LOAD, INC, and CLOCK. Verify that the load function works correctly for the parallel load register,
and that the load and increment functions work correctly for the load/increment register.

3

	Prelab
	Registers
	Simple Latch
	Program Counter

	Prelab Questions

	Lab

