
Lab 9: Computer Control Unit

October 26, 2009

Contents

1 Prelab 6

2 Lab 6

You are on the path do design your first computer. A conceptual block diagram of a simple computer
is shown in Figure 1. In previous labs you have already designed the DATA MUX, the ALU, and required
registers. In this lab you will design the computer control unit. The control unit is a finite state machine.
Its inputs are the instruction register and the carry, as well as a clock pulse and RESET. The control unit’s
outputs are the control signals that direct the operation of the rest of the computer. The control unit can
be in one of four states: RESET, FETCH, EX1 and EX2:

• RESET is the reset state. The computer gets into this state when the RESET input is low and stays in
this state until the RESET input goes high.

• FETCH is the fetch cycle. The computer program is stored in memory. During the fetch cycle the next
instruction is fetched from memory and loaded into the instruction register (INST).

• EX1 is the first execution cycle. Once an instruction has been loaded into INST, the control unit
determines the required course of action to take based on the value of INST and the current state of
the control unit.

• EX2 is the second execution cycle. Some instructions only require one execution cycle (EX1) while
others require two (EX1, and EX2).

1



EE 231 EE Dept., New Mexico Tech Fall 2009

ALU

PC

MAR

IR

Z C

ACCA

Addr_Mux

PC_INC
PC_LOAD
MAR_LOAD
IR_LOAD

INST

C

Z

ALU_CTRL

Z_LOAD

C_LOAD

Processor

MEM_W

0xFF

Memory

Control

Addr_Mux_Sel

ACCA_LOAD

data_in

address

data_out

output_port

input_port

Figure 1: Simple Computer

2



EE 231 EE Dept., New Mexico Tech Fall 2009

Table 1: Computer Instructions

Mnemonic Operation

0 LDAA addr Loads ACCA with the value in memory at address addr. C stays the
same, Z changes(load ACCA from memory)

1 LDAA IMM #num Loads ACCA with num, the value in memory at the address
immediately following the LDAA #num command. C stays the same,
Z changes

(load ACCA with an immediate)

2 STAA addr Stores the value in ACCA at memory address addr. C stays the
same, Z changes(store ACCA in memory)

3 ADDA addr Adds the value in memory location addr to the value in ACCA and
saves the result inACCA. C and Z change(add ACCA and value in memory)

4 SUBA addr Subtracts the value in memory location addr from the value in
ACCA and saves the result in ACCA. C and Z change(subtract value in memory from

ACCA)

5 ANDA addr Perform a logical AND of the value in memory location addr with
the value in ACCA. Save the result in ACCA. C stays the same, Z
changes

(logical AND of ACCA and value in
memory)

6 ORAA addr Perform a logical OR of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes(logical OR of ACCA and value in

memory)

7 CMPA addr Compare ACCA to value in addr. This is done by subtracting the
value in addr from ACCA. ACCA does not change. C and Z change(Compares ACCA to the value in

addr)

8 COMA Replace the value in ACCA with its one’s complement. C is set to 1
and Z changes(Complement ACCA)

9 INCA
Increment value in ACCA. C stays the same and Z changes

(INCA ACCA)

A LSLA
Logical shift left of ACCA. C and Z change

(logical shift left ACCA)

B LSRA
Logical shift right of ACCA. C and Z change

(logical shift right ACCA)

C ASRA
Arithmetic shift right of ACCA. C and Z change

(Arithmetic shift right ACCA)

D JMP addr Jumps to the instruction stored in address addr. The PC is
replaced with addr. C and Z stay the same(jump)

E JCS addr Jumps to the instruction stored in address addr if C=1. If C is not
set, continue with next instruction. C and Z stay the same(jump if carry set)

F JCC addr Jumps to the instruction stored in address addr if C=0. If C is set,
continue with next instruction. C and Z stay the same(jump if carry not set)

10 JEQ addr Jumps to the instruction stored in address addr if Z=1. If Z is not
set, continue with next instruction. C and Z stay the same(jump if Z set)

3



EE 231 EE Dept., New Mexico Tech Fall 2009

The outputs of the control unit are the control signals shown on the block diagram of the computer.
Except for ALU CTRL and MEM SEL, all of these signals are active low. In your Verilog code you will activate
the appropriate signals at the correct times to implement the instruction the control unit is executing.

During the FETCH cycle the control unit will fetch the next instruction from memory to determine what
instruction it should execute. Thus, the FETCH cycle will be the same for all instructions, it will read the
instruction from memory, and latch it into the INST register. To do this, IR LOAD and PC INC should be
low, and MEM SEL should be set to select the address from the program counter PC. With the control lines
set up like this the address to the memory will be from the PC, i.e., the address of the next instruction
to execute, and the memory output enable line will be low (active). The memory will put the data at
that address on its output lines, which are the input lines to the INST register. On the next clock edge,
the data from memory will be latched into the INST register, and the PC will be incremented to the next
memory address. What the control unit does next will depend on the data loaded into the INST register.
Here is a sample code of how you may structure your module.

Example 1

Consider the instruction LDAA addr where addr=0×F5. We will further assume that the instruction is in
memory address 0 × 80 and 0 × 81, and that the code for LDAA addr is 0 × 01.

PC Memory Address Memory Data
→ 80 01

81 F5
82 Next instruction

INST = ??

MAR = ??

FETCH: During the fetch cycle the instruction register must be loaded with the instruction op code, 0 × 01.
To do this the Addr MUX Sel must select the PC as the address source, memory address 0× 80 must be read
which causes its value to be placed on the DATA lines. The value on the DATA lines must be latched into IR,
and the PC must be incremented. Thus during FETCH you should have PC INC, INST LOAD and Addr Mux Sel.

PC Memory Address Memory Data
80 01

→ 81 F5
82 Next instruction

INST = 01 (LDAA addr op code)
MAR = ??

EX1: During EX1, you must read the memory address that the PC is pointing at. By reading address 0 × 81
the value 0×F5 is placed on the DATA line. Then 0×F5 needs to be stored in the MAR register. Finally, the
program counter should be incremented. Thus during EX1 you should have PC INC and MAR LOAD active, and
Addr Mux SEL set to PC. After these steps the situation should be as shown below

EX2: Now that MAR contains the value 0×F5, the multiplexer should select MAR as the source of the address.
This address should then be read which causes the memory contents of address 0×F5 to be placed onto
the DATA line. Then the ALU can load this value into ACCA. During EX2 you should have ACCA LOAD active,
Addr Mux SEL set to MAR, and ALU CTL set to LOAD. When the control lines are set up like this, the value of

4

file:sample.txt


EE 231 EE Dept., New Mexico Tech Fall 2009

PC Memory Address Memory Data
80 01
81 F5

→ 02 Next instruction

INST = 01 (LDAA addr op code)
MAR = F5

0×F5 will be on the address lines of the memory unit, and the data lines out of the memory will contain the
data in address 0×F5. This data will be passed through the ALU to the input of ACCA. On the next clock
cycle, the value will be latched into ACCA. Note that you do not want PC INC active because PC is already
pointing to the next instruction to be executed.

Example 2

The next instruction in the program is LDAA #num where #num=0×F5. This instruction translates as “load
accumulator ACCA with the value F5”. Assume the op code for LDAA # is 0×02. Before the program begins,
the situation is as below:

PC Memory Address Memory Data
→ 82 02

83 F5
84 Next instruction

INST = ??

MAR = ??

FETCH: The fetch cycle is the same for this command as it was in Example 1. After the fetch cycle the
situation should be:

PC Memory Address Memory Data
82 02

→ 83 F5
84 Next instruction

INST = 02 (LDAA #num op code)
MAR = ??

EX1: During the EX1 cycle the PC is pointing at memory address 0×83. By reading this address, the value
0×F5 is placed on the DATA line. ACCA LOAD and PC INC, should be active, MEM SEL should be set to select PC,
and the ALU CTRL lines should select the function which loads ACCA. When the control lines are set up like
this, the value 0×83 will be on the address lines of the memory unit, and the data lines out of the memory
unit will contain the data in address 0×83 (which in this example is 0×F5. This data will be passed through
the ALU to the input of ACCA. On the next clock cycle the data will be latched into ACCA. There is no EX2

cycle.

Example 3

The next instruction in the program is JMP addr where addr=0×F5. Assume the op code for JMP addr is
0×12. Before the program begins, the situation is as below:

5



EE 231 EE Dept., New Mexico Tech Fall 2009

PC Memory Address Memory Data
→ 84 12

85 F5
86 Next instruction

INST = ??

MAR = ??

FETCH: The fetch cycle is the same for this command as it was in Example 1. After the fetch cycle the
situation should be:

PC Memory Address Memory Data
84 12

→ 85 F5
86 Next instruction

INST = 12 (JMP addr op code)
MAR = ??

EX1: During the EX1 cycle the PC is pointing at memory address 0×05. By reading this address, the value
0×F5 is placed on the DATA line. ACCA LOAD and PC LOAD, should be active, and MEM SEL should be set to
select PC. When the control lines are set up like this, the value 0×85 will be on the address lines of the
memory unit, and the data lines out of the memory unit will contain the data in address 0×85 (which in
this example is 0×F5). This data will be on the input lines to PC. On the next clock cycle the data will be
latched into PC. There is no EX2 cycle.

1 Prelab

1. The output of the control unit depends on both the present state and the input. What type of state
machine is this.

2. Draw the state diagram for the control unit.

2 Lab

1. Assign op codes to each instruction in the instruction set.

2. Write a Verilog program to implement the control unit.

• To improve readability you should use PARAMETER to assign values that are frequently used in
your program, e.g., op codes.

• You should also provide default values for the control signals.

3. Simulate the control unit in Altera. What happens when RESET is low? Test with different values for
INST and check that the control unit cycles through the appropriate states for that instruction and
that the control signals are what you expect. Test the JCS command both when the carry is set and
when the carry is not set.

6


	Prelab
	Lab

