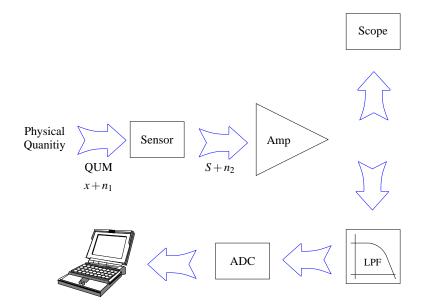
Lecture 1

Measurement Systems

EE 521: Instrumentation and Measurements


Lecture Notes from August 30, 2009

Lecture Notes from August 30, 2009		
Aly El-Osery, Electrical Engineer	ing Dept., New Mexico Tech	
		1.1
Contents		
1 Course Overview	1	
2 Measurement System	2	
3 Noise	2	
4 Error Analysis	2	1.2
1 Course Overview		
Textbooks		
 C.W. De Silva, Sensors and Actuators: Control System Instrumentation, CRC Press, 2007. R. Northrop, Introduction to Instrumentation and Measurements, 2nd Edition, CRC Press, 2005. 		
2000.		1.3
Topics Covered		
Measurement systemsError Analysis		
Signal conditioningNoise and interference		
 Survey of different types of sensor input mechanisms 		
Sensor ApplicationsData acquisition and digital signal processing		
		1.4
Grading		
Homework: 30%Final: 20%		
 Project and Research Paper: 20% 		

Presentations: 20% Class Participation: 10%

1.5

2 Measurement System

3 Noise

Noise Sources

- 1. Environment noise: associated with the physical quantity being measured.
- 2. Measurement noise: due to the measurement system.
- 3. Quantization noise: due to digitizing the analog signal.

Error in Measurement

- 1. Gross Errors
 - Taking measurement during transient time of the instrument.
 - Mistakes recording data or calculating a derived measurand.
 - Misuse of the instrument.
- 2. System Errors
 - Calibration errors.
 - Random noise both internal and external.
 - Drift.

4 Error Analysis

Error

It is important to find a way to describe errors in measurements in terms of some accepted concepts. For example, accuracy, precision, limiting error and error statistics.

1.6

1.7

1.8

1.9

Accuracy

Error

$$\varepsilon_n \equiv X_n - Y_n \tag{1}$$

and

$$\%\varepsilon \equiv \left| \frac{\varepsilon_n}{Y_n} \right| \times 100 \tag{2}$$

where Y_n is the true value and X_n is the actual measurement.

Dilemma

To compute the error we need to know the true value. If the true value is known, why measure it?

1.10

Accuracy

$$A_n \equiv 1 - \left| \frac{Y_n - X_n}{Y_n} \right| \tag{3}$$

or

$$\%A_n \equiv 100 - \%\varepsilon \tag{4}$$

1.11

Precision

$$P_n \equiv 1 - \left| \frac{X_n - \bar{X}}{\bar{X}} \right| \tag{5}$$

where

$$\bar{X} \equiv \frac{1}{N} \sum_{n=1}^{N} X_n \tag{6}$$

1.12

Deviation

• Deviation

$$d_n \equiv X_n - \bar{X} \tag{7}$$

• Average Deviation

$$D_N = \frac{1}{N} \sum_{n=1}^{N} d_n$$
 (8)

• Standard Deviation

$$S_N = \frac{1}{N} \sum_{n=1}^{N} d_n^2 = \sigma_x \tag{9}$$

• Variance

$$S_N^2 = \frac{1}{N} \sum_{n=1}^N X_n^2 - (\bar{X})^2 = \sigma_x^2$$
 (10)

1.13

Limiting Error (LE)

A term frequently used by manufacturers to describe worst case error

Taylor's Series

$$f(X \pm \Delta X) = f(X) + \frac{df}{dX} \frac{\Delta X}{1!} + \dots + \frac{d^{n-1}f}{dX^{n-1}} \frac{(\Delta X)^{n-1}}{(n-1)!}$$

1.14

Limiting Error (LE)

Assuming that QUM is a function of N variables

$$Q = f(X_1, X_2, \dots, X_N) \tag{11}$$

but due to measurement errors

$$\hat{Q} = f(X_1 \pm \Delta X_1, X_2 \pm \Delta X_2, \dots, X_n \pm \Delta X_N)$$
(12)

$$\hat{Q} = f(X_1, X_2, \dots, X_N) + \left\{ \frac{\partial f}{\partial X_1} \Delta X_1 + \frac{\partial f}{\partial X_2} \Delta X_2 + \dots + \frac{\partial f}{\partial X_N} \Delta X_N \right\} + \dots$$

$$\frac{1}{2!} \left\{ \frac{\partial^2 f}{\partial X_1^2} (\Delta X_1)^2 + \frac{\partial^2 f}{\partial X_2^2} (\Delta X_2)^2 + \dots + \frac{\partial^2 f}{\partial X_N^2} (\Delta X_N)^2 \right\} + \dots$$

Using Taylor series and ignoring the higher order terms.

$$\Delta Q_{MAX} = |Q - \hat{Q}| = \sum_{j=1}^{N} \left| \frac{\partial f}{\partial X_j} \Delta X_j \right|$$
 (13)

1.15

1.16

1.17

1.18

Linear Regression - Least Mean Square Linear Fitting

Fit a line with equation y = mx + b to a set of N noisy measurements.

Minimize

$$\sigma_{y}^{2} = \frac{1}{N} \sum_{k=1}^{N} \left[(mX_{k} + b) - Y_{k} \right]^{2}$$
(14)

Linear Regression - Least Mean Square Linear Fitting

Differentiating with respect to m and equating to zero

$$\frac{\partial \sigma_y^2}{\partial m} = \frac{2}{N} \sum_{k=1}^N \left[(mX_k + b) - Y_k \right] X_k = 0 \tag{15}$$

Differentiating with respect to b and equating to zero

$$\frac{\partial \sigma_y^2}{\partial b} = \frac{2}{N} \sum_{k=1}^{N} \left[(mX_k + b) - Y_k \right] = 0 \tag{16}$$

Linear Regression - Least Mean Square Linear Fitting

Solving the previous two equations of m and b

$$m = \frac{R_{xy}(0) - \bar{Y}\bar{X}}{\sigma_x^2} \tag{17}$$

$$b = \frac{\bar{Y}\bar{X}^2 - \bar{X}R_{xy}(0)}{\sigma_x^2} \tag{18}$$

where R_{xy} is the cross-correlation of X and Y evaluated at zero

$$R_{xy}(0) = \frac{1}{N} \sum_{k=1}^{N} X_k Y_k \tag{19}$$

Linear Regression - Goodness of fit

Using the correlation coefficient

$$r \equiv \frac{R_{xy}(0) - \bar{X}\bar{Y}}{\sigma_x \sigma_y}, \qquad 0 \le r \le 1$$
 (20)

Perfect fit if r = 1.