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1 Review Material

1.1 Signal Classification

Assume the voltage across a resistorR is e(t) and is producing a currenti(t). The instantaneous
power per ohm isp(t) = e(t)i(t)/R = i2(t).

Total Energy

E = lim
T→∞

∫ T

−T
i2(t)dt (1)

Average Power

P = lim
T→∞

1
2T

∫ T

−T
i2(t)dt (2)

3.3
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Arbitrary signal x(t)

Total Normalized Energy

E , lim
T→∞

∫ T

−T
|x(t)|2dt =

∫ ∞

−∞
|x(t)|2dt (3)

Normalized Power

P , lim
T→∞

1
2T

∫ T

−T
|x(t)|2dt (4)

• x(t) is anenergy signal iff 0 < E < ∞, so thatP = 0.
• x(t) is apower signal iff 0 < P < ∞, so thatE = ∞.

3.4

1.2 Time Averages

For Energy Signals

φ(τ) =
∫ ∞

−∞
x(λ )x(λ + τ)d f (5)

Provides a measure of similarity or coherence between a signal and a delayed version of itself.
Note thatφ(0) = E

For Power Signals

R(τ) = lim
T→∞

1
2T

∫ T

−T
x(t)x(t + τ)dt (6)

For Periodic Signals

R(τ) =
1
T0

∫

T0

x(t)x(t + τ)dt (7)

3.5

1.3 Frequency Domain

Fourier Transform Equations

X( f ) =
∫ ∞

−∞
x(t)e− j2π f tdt (8)

x(t) =
∫ ∞

−∞
X( f )e j2π f td f (9)

3.6

Energy Spectral Density

Rayleigh’s Energy Theorem or Parseval’s theorem

E =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X( f )|2d f (10)

Energy Spectral Density
G( f ) , |X( f )|2 (11)

with units ofvolts2-sec2 or, if considered on a per-ohm basis,watts-sec/Hz=joules/Hz
3.7
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Power Spectral Density

P =
∫ ∞

−∞
S( f )d f = lim

T→∞

1
2T

∫ T

−T
|x(t)|2dt (12)

where we defineS( f ) as the power spectral density with units of watts/Hz. Note that R(0) =
∫ ∞
−∞ S( f )d f . 3.8

Proof
In an analogy to the energy signals, let us define a function that would give us some indication

of the relative power contributions at various frequencies, asSx(ω). This function has units of power
per Hz and its integral yields the power inx(t) and is known aspower spectral density function.
Mathematically,

P =
1

2π

∫ ∞

−∞
Sx(ω)dω. (13)

Assume that we are given a signalx(t) and we truncate it over the interval(−T/2,T/2). This
truncated version isx(t)Π(t/T ). If x(t) is finite over the interval(−T/2,T/2), then the truncated
functionx(t)Π(t/T ) has finite energy and its Fourier transformXT (ω) is

XT (ω) = F{x(t)Π(t/T )}. (14)

Parseval’s theorem of the truncated version is
∫ T/2

−T/2
|x(t)|2dt =

1
2π

∫ ∞

−∞
|XT (ω)|2dω. (15)

Therefore, the average powerP across a one-ohm resistor is given by

P = lim
T→∞

1
T

∫ T/2

−T/2
|x(t)|2dt = lim

T→∞

1
T

1
2π

∫ ∞

−∞
|XT (ω)|2dω. (16)

Combining Equations (1) and (4), we get

1
2π

∫ ∞

−∞
Sx(ω)dω = lim

T→∞

1
T

1
2π

∫ ∞

−∞
|XT (ω)|2dω. (17)

In addition if we insist that this relation should hold over each frequency increment, then

Mx(ω) =
1

2π

∫ ω

−∞
Sx(u)du = lim

T→∞

1
T

1
2π

∫ ω

−∞
|XT (u)|2du. (18)

Mx(ω) is known as thecumulative power spectrum. Now, interchange the order of the limiting
operator and the integration (assuming it is valid)

2πMx(ω) =
∫ ω

−∞
Sx(u)du =

∫ ω

−∞
lim

T→∞

|XT (u)|2

T
du. (19)

If Mx(ω) is differentiable, then

2π
dMx(ω)

dω
= Sx(ω). (20)

Under these conditions

Sx(ω) = lim
T→∞

|XT (ω)|2

T
(21)

Taking the inverse Fourier transform of Equation (21) gives us

F
−1{Sx(ω)}=

1
2π

∫ ∞

−∞
lim

T→∞

|XT (ω)|2

T
e jωτ dω. (22)
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Interchanging the order of operation yields

F
−1{Sx(ω)}= lim

T→∞

1
2πT

∫ ∞

−∞
X∗T (ω)XT (ω)e jωτ dω

= lim
T→∞

1
2πT

∫ ∞

−∞

∫ T/2

−T/2
x∗(t)e jωtdt

∫ T/2

−T/2
x(t)e− jωt ′dt ′e jωτ dω

= lim
T→∞

1
T

∫ T/2

−T/2
x∗(t)

∫ T/2

−T/2
x(t ′)

[

1
2π

∫ ∞

−∞
e jω(t−t ′+τ)dω

]

dt ′dt.

(23)

The integration overω in the above equation is equal toδ (t− t ′+ τ), therefore

F
−1{Sx(ω)}= lim

T→∞

1
T

∫ T/2

−T/2
x∗(t)

∫ T/2

−T/2
x(t ′)δ (t− t ′+ τ)dt ′dt

= lim
T→∞

1
T

∫ T/2

−T/2
x∗(t)x(t + τ)dt

(24)

The inverse Fourier transform ofSx(ω) is calledautocorrelation function of x(t) and is denoted by
Rx(τ).

To summarize

Rx(τ) = lim
T→∞

1
T

∫ T/2

−T/2
x∗(t)x(t + τ)dt (25)

and
Sx(ω) = F{Rx(τ)} (26)

If the signal is periodic with periodT0 then,

Rx(τ) =
1
T0

∫

−T0

x∗(t)x(t + τ)dt (27)

3.9

2 Random Signals and Noise

Basic Definitions

• Define anexperiment with randomoutcome.
• Mapping of the outcome to a variable⇒ random variable.
• Mapping of the outcome to a function⇒ random function.

3.10

Probability (Cumulative) Distribution Function (cdf)

FX (x) = probability that X ≤ x = P(X ≤ x) (28)

3.11

Probability Density Function (pdf)

fX (x) =
dFX (x)

dx
(29)

and

P(x1 < X ≤ x2) = FX (x2)−FX (x1) =

∫ x2

x1

fX (x)dx (30)

3.12
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2.1 Statistical Averages

Mean of a Discrete RV

X̄ = E [X ] =
M

∑
j=1

x jPj (31)

Mean of a Continuous RV
X̄ = E [X ] =

∫ ∞

−∞
x fX (x)dx (32)

Variance of a RV
σ2

X , E
{

[X−E (X)]2
}

= E [X2]−E
2[X ] (33)

3.13

Given a two random variablesX andY .

Covariance
µXY = E {[X− x̄][Y − Ȳ ]}= E [XY ]−E [X ]E [Y ] (34)

Correlation Coefficient
ρXY =

µXY

σX σY
(35)

Autocorrelation
RX (τ) = E [X(t)X(t + τ)] (36)

3.14

2.2 Stochastic Processes

Terminology
See Figure1

.

.

.

t

t

t

X(t,ζ1)

X(t,ζ2)

X(t,ζM)

t1 t2

Figure 1: Sample functions of a random process

• X(t,ζi): sample function.
• The governing experiment: random or stochastic process.
• All sample functions: ensemble.
• X(t j,ζ ): random variable.

3.15
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Strict Sense Stationarity

If the joint pdfs depend only on the time difference regardless of the time origin, then the random
process is known asstationary.

For stationary process means and variances are independentof time and the covariance depends
only on the time difference. 3.16

Wide Sense Stationarity

If the joint pdfs depends on the time difference but the mean and variances are time-independent,
then the random process is known aswide-sense-stationary.

3.17

Ergodicity

If the time statistics equals ensemble statistics, then therandom process is known asergodic.
3.18

2.3 Correlation and Power Spectral Density

Power Spectral Density
Given a sample functionX(t,ζi) of a random process, we first obtain the power spectral density

by means of the Fourier transform of a truncated versionXT (t,ζi) defined as

XT (t,ζi) =

{

X(t,ζi), |t|< 1
2T

0, otherwise
(37)

The Fourier transform ofXT (t,ζi) is

F{XT (t,ζi)}=
∫ T/2

−T/2
X(t,ζi)e

j2π f tdt (38)

3.19

Power Spectral Density of a Random Process
The energy spectral density is|F{XT (t,ζi)}|

2 and the average power density over theT is
|F{XT (t,ζi)}|

2/T . Since we have many sample functions, it is intuitive to takethe ensemble av-
erage asT → ∞, therefor the power spectral density,SX ( f ) is given by

SX ( f ) = lim
T→∞

|F{XT (t,ζi)}|2

T
(39)

3.20

Wiener-Khinchine Theorem

|F [X2T (t)]|2 =

∣

∣

∣

∣

∫ T

−T
X(t)e− jωtdt

∣

∣

∣

∣

2

=
∫ T

−T

∫ T

−T
X(t)X(σ)e jω(t−σ)dtdσ

(40)

E
{

|F [X2T (t)]|2
}

=
∫ T

−T

∫ T

−T
E [X(t)X(σ)]e jω(t−σ)dtdσ

∫ T

−T

∫ T

−T
R(t−σ)e jω(t−σ)dtdσ

(41)

Apply the change of variablesu = t−σ andv = t, thus (refer to Figure2).

6



t

σ

−T T

T

−T

v

u
2T

−2T

−T

T

Figure 2: Sample functions of a random process

E
{

|F [X2T (t)]|2
}

=
∫ 0

u=−2T
R(u)e− jωudu

(

∫ u+T

−T
dv

)

du+
∫ 2T

u=0
R(u)e− jωu

(

∫ T

u−T
dv

)

du

=
∫ 0

−2T
(2T +u)R(u)e− jωudu+

∫ 2T

0
(2T −u)R(u)e− jωudu

= 2T
∫ 2T

−2T

(

1−
|u|
2T

)

R(u)e− jωudu

(42)

SX ( f ) = lim
T→∞

∫ 2T

−2T

(

1−
|u|
2T

)

RX (u)e− jωudu (43)

asT → ∞
S( f )

F
←→ R(τ) (44)

3.21

2.4 Input-Output Relationship of Linear Systems

SY ( f ) = |H( f )|2SX ( f ) (45)

3.22

3 Examples

Example 1 - Mean and Variance
Given a random variable described by the following uniform pdf

fX (x) =

{

1
b−1, a≤ x≤ b

0, otherwise
(46)

Compute the mean, the second moment, and the variance. 3.23

Example 2 - Time and Statistical Averages
Given a the following random process

X(t) = Acos(2π f0t +Θ) (47)

where f0 is a constant andΘ is a random variable with the following pdf

fΘ(x) =

{

1
2π , |θ | ≤ π
0, otherwise.

(48)
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Compute the statistical and time averages of the first and second moments. Is this process stationary?
Is it ergodic? 3.24

Example 3 - Power Spectral Density
Given the same process shown in Example 2, compute the power spectral density using Eq.39.

Verify your answer using Wiener-Khinchine Theorem. 3.25
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