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1 Review Material
1.1 Signal Classification
Assume the voltage across a residas e(t) and is producing a currenit). The instantaneous
power per ohm i(t) = e(t)i(t)/R=i%(t).
Total Energy
T
E=lim [ i?t)dt 1)
T—o0 -T
Average Power
1 T
P=lim — i2(t)dt 2
TILnoo 2T /—TI (td @)
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Arbitrary signal x(t)

Total Normalized Energy
T

E2 Jim _T|x(t)|2dt:/_w Ix(t)[ 2t

T—ow

Normalized Power
pa I|m = t)[2dt

2T
e X(t) is anenergy signal iff 0 < E < o, so thatP = 0.
o X(t) is apower signal iff 0 < P < oo, s0 thatE = co.

1.2 Time Averages

For Energy Signals
(1) :/ X(AX(A + T)d

Provides a measure of similarity or coherence between alségnl a delayed version of itself.

Note thatg(0) =

For Power Signals
= lim — /
T—0 2T

For Periodic Signals
R == [ xOx(t+ )
To J1o

1.3 Frequency Domain

Fourier Transform Equations

Energy Spectral Density

Rayleigh’s Energy Theorem or Parseval's theorem

E— / t)[2dt = /Z|X(f)|2df

G(f) £ |X(f)?

with units ofvolts?-sec? or, if considered on a per-ohm basigtts-sec/Hz=joules/Hz

Energy Spectral Density

®3)

(4)

®)

(6)

@)

8)
9)

(10)

(11)
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Power Spectral Density

.
P / S(H)df = Jim [ _|x(t) (12)
.

where we defineS(f) as the power spectral denS|ty with units of watts/Hz.  Notg R(0) =

2, S(f)df. 3.8

Proof

In an analogy to the energy signals, let us define a functiahwiould give us some indication
of the relative power contributions at various frequencss,(w). This function has units of power
per Hz and its integral yields the power () and is known agpower spectral density function.

Mathematically,
1 00
= 72n/7ws<(w)dw. (13)

Assume that we are given a signdt) and we truncate it over the interve+-T/2,T/2). This
truncated version ig(t)M1(t/T). If x(t) is finite over the interva(—T /2, T /2), then the truncated
functionx(t)M(t/T) has finite energy and its Fourier transfon(w) is

Xr(w) = F{XONE/T)}- (14)

Parseval’s theorem of the truncated version is

/ 00
/T ® x(0)2dt = %T/_W|XT(w)|2dw. (15)

-T/2

Therefore, the average powRiacross a one-ohm resistor is given by

P— lim T/ t) ot = im ,?/ X ()| 2dc0. (16)

T—o00

Combining Equations (1) and (4), we get

! /i&( w)dw = Jim *2 / Xt () Pdw. (17)

on /-

In addition if we insist that this relation should hold ovaick frequency increment, then

My (@) = %‘[/_(:S(( du = lim —2—/ %t (u)|du. (18)

My(w) is known as thecumulative power spectrum. Now, interchange the order of the limiting
operator and the integration (assuming it is valid)

w 2
1My / S(u / jim X1 g, (19)
o0 T —00 T
If My(w) is differentiable, then
dMx(w)
n—y = = Sc(w). (20)
Under these conditions )
Si(@) = lim leEI_w” (21)

Taking the inverse Fourier transform of Equati@i)(gives us

00

T Hs(w)} = Zln/ T“anwej“"dw. (22)



Interchanging the order of operation yields

FHs()} = Jim o [ (@) (w)eiTde
:T|i£)nmﬁ/ / eJ“’tdt/ e 1 dt’el T dew (23)

T/2 T/2
— Jim / X / (t’){ / glolt- ‘+T>dw] dt'dt.
T T T/2 T/2 2n

The integration ovew in the above equation is equal &t —t’ + 1), therefore

T/2 T/2
FHS(w)} = lim / X / X(t')3(t —t' + T)dt'dt
ToeoT T/2 T/2

(24)
— lim = / X(t+ T)dt
T T T/2 %_ )
The inverse Fourier transform &(w) is calledautocorrelation function of x(t) and is denoted by
Rx(T).
To summarize
=i T T)dt (25)
= lim
T—eo T /T/2
and
S(w) = -F{R(1)} (26)
If the signal is periodic with periody then,
R(T) = i/ X" (t)x(t + T)dt (27)
TO —To
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2 Random Signals and Noise
Basic Definitions
¢ Define anexperiment with randomoutcome.
e Mapping of the outcome to a variabte random variable.
e Mapping of the outcome to a functies random function.
3.10
Probability (Cumulative) Distribution Function (cdf)
Fx (X) = probability that X < x=P(X <X) (28)
3.11
Probability Density Function (pdf)
_ dRx()
fX (X) - dx (29)
and %o
P(x, < X < %o) = Fx (¥e) — Fx(¥1) = / i (X) (30)
J X1
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2.1 Statistical Averages

Mean of a Discrete RV

_ M
X=&X =Y xP (31)
J; it
Mean of a Continuous RV 3 -
X = &[X] = / xfx (X)dx (32)
Variance of a RV
0% 2 6 {X—EX)P} = &X¥ - 62[X] (33)

Given a two random variables andY.

Covariance _
bxy = & {X—X[Y ~ Y]} = E[XY] ~ £[X]E]Y] (34)
Correlation Coefficient Ly
Pxy = OO (35)
Autocorrelation
Rx(T) = &[X()X(t+1)] (36)

2.2 Stochastic Processes

Terminology
See Figurel
X(t,41) ' '
N AN
VYV
X(t,{2) i i
\/ v%’\ //Ai\\/ /\\ t
X(t,4m) i i
A m AN
v 3 HAVAAN
Figure 1: Sample functions of a random process
e X(t,¢i): sample function.
e The governing experiment: random or stochastic process.
e All sample functions: ensemble.
e X(tj,{): random variable.




Strict Sense Stationarity

If the joint pdfs depend only on the time difference regasdlef the time origin, then the random
process is known egationary.

For stationary process means and variances are indepeasfdane and the covariance depends
only on the time difference.

Wide Sense Stationarity

If the joint pdfs depends on the time difference but the meah\ariances are time-independent,
then the random process is knowrvade-sense-stationary.

Ergodicity

If the time statistics equals ensemble statistics, themahdom process is known agodic.

2.3 Correlation and Power Spectral Density

Power Spectral Density
Given a sample functioX (t, {i) of a random process, we first obtain the power spectral densit
by means of the Fourier transform of a truncated ver¥ipft, ¢;) defined as

: 1
Xr(t,§) = {;((t,z.), <t (37)

otherwise

The Fourier transform okt (t, ) is

F{Xr(t,4)} = [ TT/;xa,zi)eiz"f‘dt (38)

Power Spectral Density of a Random Process

The energy spectral density |7 {Xr(t,Z)}|? and the average power density over fhes
|.Z{X7(t,4)}|?/T. Since we have many sample functions, it is intuitive to ttiesensemble av-
erage a§ — oo, therefor the power spectral densiBy,(f) is given by

(1) = Jm ZOTEDIP 39
Wiener-Khinchine Theorem
|.Z X ' t)e l“‘dt
2T / (40)
_ / / X (t)X(0)el®t-%)dtda
A Y
E{|F Xor (V]1?} :/T /T EX(t)X(0)]e®t - dtdo
(41)

// R(t — 0)ei“t-9dtdo

Apply the change of variablas=t — o andv =t, thus (refer to Figure).
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Figure 2: Sample functions of a random process

{17 Xer (0)12)
= rwe ([ av)au [ mwe ([ av)a

0 _ 21 , (42)
:/ (2T+u)R(u)e*"””du+/ (2T —u)R(u)e'“du
2T 0
:ZT/2T 1—M R(u)e 1“Ydu
_oT 2T
Sx(f) = lim S ETEATS (u)e” 1 dy (43)
T—o J 2T 2T %
asT — o _
S(f) <25 R(1) (44)
2.4 Input-Output Relationship of Linear Systems
Se(f) = [H(f)I*S(f) (45)
3 Examples
Example 1 - Mean and Variance
Given a random variable described by the following uniforaf p
- a<x<b
fxy(x) =< b1 7 ="= 46
x() {07 otherwise (46)
Compute the mean, the second moment, and the variance.
Example 2 - Time and Statistical Averages
Given a the following random process
X(t) = Acogq2rtfot + O) 47)
wherefy is a constant an® is a random variable with the following pdf
fo(X) = e lBl<m (48)
oV 0, otherwise.




Compute the statistical and time averages of the first ammhslemoments. Is this process stationary?
Is it ergodic?

Example 3 - Power Spectral Density

Given the same process shown in Example 2, compute the ppeetral density using E9.
Verify your answer using Wiener-Khinchine Theorem.
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