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Assume the voltage across a resistor R is e(t) and is producing
a current i(t). The instantaneous power per ohm is
p(t) = e(t)i(t)/R = i2(t).

Total Energy

E = lim
T→∞

∫ T

−T
i2(t)dt (1)

Average Power

P = lim
T→∞

1
2T

∫ T

−T
i2(t)dt (2)
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Arbitrary signal x(t)

Total Normalized Energy

E , lim
T→∞

∫ T

−T
|x(t)|2dt =

∫

∞

−∞

|x(t)|2dt (3)

Normalized Power

P , lim
T→∞

1
2T

∫ T

−T
|x(t)|2dt (4)
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For Energy Signals

φ(τ) =

∫

∞

−∞

x(λ)x(λ + τ)df (5)

For Power Signals

R(τ) = lim
T→∞

1
2T

∫ T

−T
x(t)x(t + τ)dt (6)

For Periodic Signals

R(τ) =
1
T0

∫

T0

x(t)x(t + τ)dt (7)

5 / 24
EE 521: Instrumentation and Measurements



Outline Review Material Random Signals and Noise Examples

Fourier Transform Equations

X (f ) =

∫

∞

−∞

x(t)e−j2πftdt (8)

x(t) =

∫

∞

−∞

X (f )ej2πftdf (9)
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Energy Spectral Density

Rayleigh’s Energy Theorem or Parseval’s theorem

E =

∫

∞

−∞

|x(t)|2dt =

∫

∞

−∞

|X (f )|2df (10)

Energy Spectral Density

G(f ) , |X (f )|2 (11)

with units of volts2-sec2 or, if considered on a per-ohm basis,
watts-sec/Hz=joules/Hz
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Power Spectral Density

P =

∫

∞

−∞

S(f )df = lim
T→∞

1
2T

∫ T

−T
|x(t)|2dt (12)

where we define S(f ) as the power spectral density with units
of watts/Hz.

8 / 24
EE 521: Instrumentation and Measurements



Outline Review Material Random Signals and Noise Examples

Basic Definitions

Define an experiment with random outcome.

Mapping of the outcome to a variable⇒ random variable.

Mapping of the outcome to a function⇒ random function.
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Probability (Cumulative) Distribution Function (cdf)

FX (x) = probability that X ≤ x = P(X ≤ x) (13)
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Probability Density Function (pdf)

fX (x) =
dFX (x)

dx
(14)

and

P(x1 < X ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x)dx (15)
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Mean of a Discrete RV

X̄ = E [X ] =
M

∑

j=1

xjPj (16)

Mean of a Continuous RV

X̄ = E [X ] =

∫

∞

−∞

xfX (x)dx (17)

Variance of a RV

σ2
X , E

{

[X − E(X )]2
}

= E [X 2]− E2[X ] (18)
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Given a two random variables X and Y .

Covariance

µXY = E
{

[X − x̄ ][Y − Ȳ ]
}

= E [XY ]− E [X ]E [Y ] (19)

Correlation Coefficient

ρXY =
µXY

σX σY
(20)

Autocorrelation

RX (τ) = E [X (t)X (t + τ)] (21)
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Terminology

.

.

.

t

t

t

X (t , ζ1)

X (t , ζ2)

X (t , ζM)

t1 t2

Figure: Sample functions of a
random process

X (t , ζi): sample function.

The governing experiment:
random or stochastic
process.

All sample functions:
ensemble.

X (tj , ζ): random variable.
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Strict Sense Stationarity

If the joint pdfs depend only on the time difference regardless of
the time origin, then the random process is known as
stationary.

For stationary process means and variances are independent
of time and the covariance depends only on the time difference.
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Wide Sense Stationarity

If the joint pdfs depends on the time difference but the mean
and variances are time-independent, then the random process
is known as wide-sense-stationary.
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Ergodicity

If the time statistics equals ensemble statistics, then the
random process is known as ergodic.
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Power Spectral Density

Given a sample function X (t , ζi) of a random process, we first
obtain the power spectral density by means of the Fourier
transform of a truncated version XT (t , ζi) defined as

XT (t , ζi) =

{

X (t , ζi), |t | < 1
2T

0, otherwise
(22)

The Fourier transform of XT (t , ζi) is

F{XT (t , ζi)} =

∫ T/2

−T/2
X (t , ζi)e

j2πftdt (23)
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Power Spectral Density of a Random Process

The energy spectral density is |F{XT (t , ζi)}|
2 and the average

power density over the T is |F{XT (t , ζi)}|
2/T . Since we have

many sample functions, it is intuitive to take the ensemble
average as T →∞, therefor the power spectral density, SX (f )
is given by

SX (f ) = lim
T→∞

|F{XT (t , ζi)}|2

T
(24)
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Wiener-Khinchine Theorem

SX (f ) = lim
T→∞

∫ 2T

−2T

(

1−
|u|
2T

)

RX (u)e−jωudu (25)

as T →∞
S(f ) F

←→ R(τ) (26)
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SY (f ) = |H(f )|2SX (f ) (27)
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Example 1 - Mean and Variance

Given a random variable described by the following uniform pdf

fX (x) =

{

1
b−1 , a ≤ x ≤ b

0, otherwise
(28)

Compute the mean, the second moment, and the variance.
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Example 2 - Time and Statistical Averages

Given a the following random process

X (t) = A cos(2πf0t + Θ) (29)

where f0 is a constant and Θ is a random variable with the
following pdf

fΘ(x) =

{

1
2π , |θ| ≤ π

0, otherwise.
(30)

Compute the statistical and time averages of the first and
second moments. Is this process stationary? Is it ergodic?
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Example 3 - Power Spectral Density

Given the same process shown in Example 2, compute the
power spectral density using Eq. 24. Verify your answer using
Wiener-Khinchine Theorem.
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