# Lecture 4 Noise and Coherent Interference in Measurements

# EE 521: Instrumentation and Measurements

Lecture Notes Update on October 14, 2009

Aly El-Osery, Electrical Engineering Dept., New Mexico Tech

# Contents

| 1 | Physical Noise Sources          |  |  |  |  |
|---|---------------------------------|--|--|--|--|
|   | 1.1 Thermal Noise               |  |  |  |  |
|   | 1.2 Shot and Flicker Noise      |  |  |  |  |
|   | 1.3 Available Power             |  |  |  |  |
| 2 | 2 System Noise Characterization |  |  |  |  |
|   | 2.1 Noise Figure                |  |  |  |  |
|   | 2.2 Effective Noise Temperature |  |  |  |  |

# 1 Physical Noise Sources

## 1.1 Thermal Noise

#### Thermal or Johnson Noise

*Thermal* or *Johnson* noise arises from the random motion of charge carriers in a conducting or semiconducting medium.

#### Noisy Resistor

#### Nyquist's theorem

$$v_{rms}^2 = \langle v_n^2(t) \rangle = 4kTRB \quad V^2 \tag{1}$$

represents the mean-squared noise voltage appearing across the terminals of a resistor of *R* ohms at temperature *T* Kelvin in the frequency band *B* hertz where  $k = 1.38 \times 10^{-23}$  J/K is Boltzmann's constant.

See Figure 1

#### Noisy Resistor

$$i_{rms}^2 = \langle i_n^2(t) \rangle = \frac{\langle v_n^2(t) \rangle}{R^2} = 4kTGB \quad A^2$$
 (2)

See Figure 2

1

4.1

4.2

4.3

4.4

4.5



Figure 1: Thevenin equivalent circuit for a noisy resistor.



Figure 2: Norton equivalent circuit for a noisy resistor.

#### Nyquist's Formula

Noise computation can get considerably lengthy if the circuit contains many resistors. Using Nyquist's formula, the mean square noise voltage produced at the output terminal of any one-port network can be computed as

$$\langle v_n^2(t) \rangle = 2kT \int_{-\infty}^{\infty} R(f) df$$
 (3)

where R(f) is the real part of the complex impedance seen looking back at into the terminals. If the networks contain only resistors

$$v_{rms}^2 = 4kTR_{eq}B \quad V^2 \tag{4}$$

4.6

4.7

4.8

## 1.2 Shot and Flicker Noise

#### Shot Noise

Shot noise results from the discrete nature of current flow in electronic devices.

$$i_{rms}^2 = \langle i_n^2(t) \rangle = 2eI_d B A^2$$
 (5)

where  $e = 1.6 \times 10^{-19}$ C is the charge of and electron.

#### Flicker Noise or 1/f Noise

The power spectral density of flicker noise is characterized by 1/f dependency.

## 1.3 Available Power

See Figure 3

• Maximum power is transferred from a source with internal resistance *R* to a resistive load  $R_L$  if  $R = R_L$ , i.e., load is *matched* to the source.



Figure 3: Thevenin equivalent for a source with load resistance  $R_L$ .

• The delivered power to the load,  $P_a$ , is known as *available power*.

$$P_a = \frac{1}{R} \left(\frac{1}{2} v_{rms}\right)^2 = \frac{v_{rms}^2}{4R} \tag{6}$$

• Assuming a noisy resistor, the available power is

$$P_{a,R} = \frac{4kTRB}{4R} = kTB \qquad W \tag{7}$$

# 2 System Noise Characterization

# 2.1 Noise Figure

### Cascade of subsystems

See Figure 4



Figure 4: A system consisting of a cascade of subsystems.

## See Figure 5



Figure 5: *l*th subsystems

## Noise Figure F

 $F = \frac{SNR_{in}}{SNR_{out}} \tag{8}$ 

Looking at the *l*th subsystem

$$\left(\frac{S}{N}\right)_{l} = \frac{1}{F_{l}} \left(\frac{S}{N}\right)_{l-1} \tag{9}$$

## Noise Figure F

 $F_l = 1 + \frac{P_{int,l}}{G_a k T_s B} \tag{10}$ 

Computing the input SNR

$$\left(\frac{S}{N}\right)_{l-1} = \frac{P_{sa,l-1}}{P_{sa,l}} = \frac{e_{s,l-1}^2/(4R_{l-1})}{kT_s B} = \frac{e_{s,l-1}^2}{4kT_s R_{l-1}B}$$
(11)

and assuming things are matched,

$$P_{sa,l} = \frac{e_{s,l}^2}{4R_l} = G_a P_{sa,l-1}$$
(12)

The output SNR

$$\left(\frac{S}{N}\right)_{l} = \frac{P_{sa,l}}{P_{na,l}} = \frac{1}{F_{1}} \frac{P_{sa,l-1}}{P_{na,l-1}}$$
(13)

4.9

4.10

Consequently, the noise figure of the *l*th subsystem is given by

$$F_l = \frac{P_{na,l}}{G_a P_{na,l-1}} = 1 + \frac{P_{int,l}}{G_a k T_s B}$$
(14)

where  $P_{int,l}$  is the internally generated noise power of the *l*th subsystem. To provide a common standard assume  $T_s = T_o = 290$ K

$$F_l = 1 + \frac{P_{int,l}}{G_a k T_0 B} \tag{15}$$

# 2.2 Effective Noise Temperature

Define the *effective noise temperature*  $T_e$  as

$$T_e = \frac{P_{int,l}}{G_a k B} \tag{16}$$

Note that this term is has the dimension of temperature, hence the name. Therefore, we can write the noise figure as

$$F_l = 1 + \frac{T_e}{T_0} \tag{17}$$

and

$$T_e = (F_l - 1)T_0 \tag{18}$$

Friis's Formula

$$F = F_1 + \frac{F_2 - 1}{G_{a_1}} + \frac{F_3 - 1}{G_{a_1}G_{a_2}} + \dots$$
(19)

$$T_e = T_{e_1} + \frac{T_{e_2}}{G_{a_1}} + \frac{T_{e_3}}{G_{a_1}G_{a_2}} + \dots$$
(20)

4.12

4.11